物理
机械
传热
沸腾
流量(数学)
明渠流量
频道(广播)
分层流
流动沸腾
热力学
核沸腾
传热系数
湍流
电气工程
工程类
作者
Wei Lu,Zhanru Zhang,Yujie Chen,Bohong Wang,Bo Yu,Dongliang Sun,Zhang We,Yan‐Ru Yang,Xiaodong Wang
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-03-01
卷期号:36 (3)
被引量:3
摘要
Gravity plays a crucial role in influencing bubble behavior and heat transfer in flow boiling, and its impact can vary significantly in aerospace settings. Therefore, this study aims to numerically investigate flow boiling heat transfer in a rectangular mini-channel under hyper-gravity conditions, specifically at 12 times the normal gravity. To accomplish this, a coupled volume-of-fluid and level set method is employed, taking into account fluid-solid conjugated heat transfer as well as a nucleus site density model derived from experimental data. By reproducing the flow pattern and heat transfer characteristics under different heat flux and flow rate conditions, the study unveils the effects of hyper-gravity on flow boiling heat transfer. When the flow rate is lower under hyper-gravity conditions, a notable phenomenon occurs wherein numerous bubbles detach from the heating wall and coalesce into a vapor film at the top of the mini-channel due to increased buoyancy. In contrast, under normal gravity, bubbles merge and slide on the heating wall, leading to the formation of a dry patch below. Consequently, hyper-gravity results in a lower wall superheat, and the disparity in average wall superheat between normal and high gravities escalates as the added heat flux rises. Notably, in the hyper-gravity environment, the frequent detachment of bubbles in the middle and downstream sections of the mini-channel leads to an initial increase in wall superheating, followed by a plateau along the flow direction. As the flow rate increases, the inertial force intensifies. However, intriguingly, the discrepancy in flow boiling heat transfer between normal and high gravities does not exhibit a monotonic decrease with the increasing flow rate. This behavior can be attributed to the pressing of more bubbles onto the heating wall under normal gravity, resulting in the formation of dry patches at high velocities.
科研通智能强力驱动
Strongly Powered by AbleSci AI