已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DMA: Dual Modality-Aware Alignment for Visible-Infrared Person Re-Identification

计算机科学 判别式 模态(人机交互) 人工智能 计算机视觉 模式识别(心理学) 水准点(测量) 色空间 红外线的 图像(数学) 光学 大地测量学 地理 物理
作者
Zhenyu Cui,Jiahuan Zhou,Yuxin Peng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2696-2708 被引量:4
标识
DOI:10.1109/tifs.2024.3352408
摘要

Visible-infrared person re-identification (VI-ReID) aims to identify the same person across visible and infrared images. Its main challenge is how to extract modality-irrelevant person identity information. To alleviate cross-modality discrepancies, existing methods typically follow two paradigms: 1) Transform visible images into gray-scale color space and map them into the infrared domain. 2) Stack infrared images into RGB color space and map them into the visible domain. However, limited by different optical properties of visible and infrared waves, such mapping commonly leads to information asymmetry. Although some efforts prevent such discrepancies by data-level alignment, they typically meanwhile introduce misleading information and bring extra divergence. Therefore, existing methods fail on effectively eliminating the modality discrepancies. In this paper, we first analyze the essential factors to the generation of modality discrepancies. Secondly, we propose a novel Dual Modality-aware Alignment (DMA) model for VI-ReID, which can preserve discriminative identity information and suppress the misleading information within a uniform scheme. Particularly, based on the intrinsic optical properties of both modalities, a Dual Modality Transfer (DMT) module is proposed to perform compensation for the information asymmetry in HSV color space, thereby effectively alleviating cross-modality discrepancies and better preserving discriminative identity features. Further, an Intra-local Alignment (IA) module is proposed to suppress the misleading information, where a fine-grained local consistency objective function is designed to achieve more compact intra-class representations. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our method and competitive performance with state-of-the-art methods. The source code of this paper is available at https://github.com/PKU-ICST-MIPL/DMA_TIFS2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adam完成签到 ,获得积分10
刚刚
程风破浪完成签到,获得积分10
1秒前
nannan发布了新的文献求助10
5秒前
jessie完成签到 ,获得积分10
5秒前
宣灵薇完成签到 ,获得积分10
6秒前
6秒前
朴实初夏完成签到 ,获得积分10
7秒前
出头天完成签到,获得积分10
9秒前
迷人面包完成签到,获得积分10
9秒前
zjx完成签到 ,获得积分10
10秒前
hp571发布了新的文献求助10
13秒前
古今奇观完成签到 ,获得积分10
13秒前
13秒前
14秒前
可爱丸子完成签到,获得积分10
16秒前
16秒前
16秒前
敏宝完成签到,获得积分10
17秒前
完美世界应助科研通管家采纳,获得30
17秒前
苏来娜发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
yangsi完成签到 ,获得积分10
18秒前
zinc完成签到,获得积分10
18秒前
sycsyc完成签到,获得积分10
19秒前
JG完成签到 ,获得积分10
20秒前
可爱丸子发布了新的文献求助10
20秒前
zinc发布了新的文献求助10
21秒前
zxldylan发布了新的文献求助10
21秒前
AUGKING27完成签到 ,获得积分10
22秒前
26秒前
丸子完成签到 ,获得积分10
27秒前
ran完成签到 ,获得积分10
27秒前
研友_VZG7GZ应助kelexh采纳,获得10
27秒前
zxldylan完成签到,获得积分10
27秒前
yangzai完成签到 ,获得积分10
32秒前
32秒前
tzjz_zrz完成签到,获得积分10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845393
求助须知:如何正确求助?哪些是违规求助? 3387685
关于积分的说明 10550285
捐赠科研通 3108385
什么是DOI,文献DOI怎么找? 1712551
邀请新用户注册赠送积分活动 824474
科研通“疑难数据库(出版商)”最低求助积分说明 774824