Future of generative adversarial networks (GAN) for anomaly detection in network security: A review

异常检测 计算机科学 对抗制 入侵检测系统 异常(物理) 生成语法 钥匙(锁) 网络安全 数据挖掘 生成对抗网络 数据科学 人工智能 计算机安全 深度学习 物理 凝聚态物理
作者
Willone Lim,Kelvin S. C. Yong,Lau Bee Theng,Choon Lin Tan
出处
期刊:Computers & Security [Elsevier BV]
卷期号:139: 103733-103733 被引量:32
标识
DOI:10.1016/j.cose.2024.103733
摘要

Anomaly detection is crucial in various applications, particularly cybersecurity and network intrusion. However, a common challenge across anomaly detection techniques is the scarcity of data that accurately represents abnormal behavior, as such behavior is often detrimental to systems and, consequently, rare. This data limitation hampers the development and evaluation of effective anomaly detection methods. In recent years, Generative Adversarial Networks (GANs) have garnered significant attention in anomaly detection research due to their unique capacity to generate new data. This study conducts a systematic review of the literature to delve into the utilization of GANs for network anomaly detection, with a specific emphasis on representation learning rather than merely data augmentation. Our study also seeks to assess the efficacy of GANs in network anomaly detection by examining their key characteristics. By offering valuable insights, our research can aid researchers and practitioners in understanding the evolving landscape of network anomaly detection and the practical implementation of GANs while addressing the challenges in developing robust GAN-based anomaly detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到 ,获得积分10
刚刚
dandna完成签到 ,获得积分10
刚刚
Lucas应助朴实问芙采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得30
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
情怀应助单纯的雅香采纳,获得10
5秒前
7秒前
7秒前
杰克完成签到,获得积分10
10秒前
香蕉初瑶完成签到,获得积分10
10秒前
上官若男应助坦率惊蛰采纳,获得10
11秒前
hugo完成签到,获得积分10
12秒前
夕沫发布了新的文献求助10
12秒前
孔大漂亮完成签到,获得积分10
12秒前
13秒前
ahhhhh发布了新的文献求助10
13秒前
赵Zhao完成签到,获得积分10
14秒前
风趣的靖雁完成签到 ,获得积分10
16秒前
iNk应助爱笑夜蕾采纳,获得20
17秒前
精明的新蕾完成签到,获得积分10
18秒前
mini发布了新的文献求助10
18秒前
夕沫完成签到,获得积分10
19秒前
泽木完成签到,获得积分10
20秒前
坦率惊蛰完成签到,获得积分10
22秒前
然然完成签到,获得积分10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010