Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries

材料科学 电解质 溶解 法拉第效率 水溶液 阳极 阴极 化学工程 阴极保护 容量损失 无机化学 枝晶(数学) 电极 冶金 化学 物理化学 工程类 几何学 数学
作者
Tao Jin,Xiling Ye,Zhuo Chen,Shuai Bai,Yining Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (4): 4729-4740 被引量:14
标识
DOI:10.1021/acsami.3c16321
摘要

Aqueous zinc-ion batteries have attracted attention due to their low cost and high safety. Unfortunately, dendrite growth, hydrogen evolution reactions, cathodic dissolution, and other problems are more serious; not only that, but also the cathodic and anodic materials' lattices contract when the temperature drops, and charge transfer and solid phase diffusion become slow, seriously aggravating dendrite growth. At present, there are few studies on the low-temperature system, and studies on retaining high specific capacity are even more rare. Herein, ethylene glycol (EG) and manganese sulfate (MSO) are selected as additives, and the manganese vanadate (MVO) cathode is used to find a high-performance solution at low temperature. MVO can provide higher specific capacity and better structural stability than MnO2 to adapt to a low-temperature environment. At the same time, Mn2+ in MSO can produce a cationic shield covering the initial zinc tip at an appropriate concentration to avoid the tip effect and inhibit the dissolution of MVO. EG can not only reduce the freezing point of the electrolyte but also promote the desolvation of [Zn(H2O)6]2+. The synergistic effect of the three elements prevents the dissolution equilibrium of Mn2+ in MVO from fluctuating greatly due to the change of temperature. Therefore, when we use EG@0.2 M MnSO4 + 2 M ZnSO4 (EG + 0.2Mn/2ZSO) electrolyte at −30 °C, the Zn||Zn batteries which used this type of electrolyte can remain 350 h at 1 mA cm–2 without failure. The Zn||Cu batteries can retain 100% Coulombic efficiency after more than 2000 cycles at 0.2 mA cm–2. The Zn||MVO battery can reach 231.13 mA h g–1 at its first cycle, and the capacity retention rate is still above 85% after 1000 cycles, which is higher than that of the existing low-temperature research system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex发布了新的文献求助10
刚刚
橘猫完成签到 ,获得积分10
1秒前
1秒前
大模型应助masterwill采纳,获得10
1秒前
1秒前
吕凯强完成签到 ,获得积分10
3秒前
搜集达人应助吴嘉俊采纳,获得10
3秒前
5秒前
6秒前
顾矜应助1565028013采纳,获得30
7秒前
无情孤菱发布了新的文献求助10
8秒前
11秒前
SciGPT应助terry采纳,获得10
11秒前
贝壳发布了新的文献求助10
12秒前
xie69完成签到 ,获得积分10
13秒前
情怀应助微笑的寒梦采纳,获得10
14秒前
FashionBoy应助弓纪世采纳,获得10
15秒前
武雨寒发布了新的文献求助10
17秒前
17秒前
20秒前
吴嘉俊发布了新的文献求助10
22秒前
草壁米发布了新的文献求助30
24秒前
无情孤菱完成签到,获得积分20
24秒前
ygg应助贝壳采纳,获得10
26秒前
27秒前
孝顺的尔丝完成签到,获得积分10
28秒前
28秒前
XXH发布了新的文献求助10
29秒前
30秒前
RBT发布了新的文献求助10
31秒前
wanci应助活泼的觅云采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
32秒前
尔烟应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
32秒前
Alex应助科研通管家采纳,获得20
32秒前
32秒前
科研通AI5应助科研通管家采纳,获得30
32秒前
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572