Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries

材料科学 电解质 溶解 法拉第效率 水溶液 阳极 阴极 化学工程 阴极保护 容量损失 无机化学 枝晶(数学) 电极 冶金 化学 物理化学 工程类 数学 几何学
作者
Tao Jin,Xiling Ye,Zhuo Chen,Shuai Bai,Yining Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (4): 4729-4740 被引量:17
标识
DOI:10.1021/acsami.3c16321
摘要

Aqueous zinc-ion batteries have attracted attention due to their low cost and high safety. Unfortunately, dendrite growth, hydrogen evolution reactions, cathodic dissolution, and other problems are more serious; not only that, but also the cathodic and anodic materials' lattices contract when the temperature drops, and charge transfer and solid phase diffusion become slow, seriously aggravating dendrite growth. At present, there are few studies on the low-temperature system, and studies on retaining high specific capacity are even more rare. Herein, ethylene glycol (EG) and manganese sulfate (MSO) are selected as additives, and the manganese vanadate (MVO) cathode is used to find a high-performance solution at low temperature. MVO can provide higher specific capacity and better structural stability than MnO2 to adapt to a low-temperature environment. At the same time, Mn2+ in MSO can produce a cationic shield covering the initial zinc tip at an appropriate concentration to avoid the tip effect and inhibit the dissolution of MVO. EG can not only reduce the freezing point of the electrolyte but also promote the desolvation of [Zn(H2O)6]2+. The synergistic effect of the three elements prevents the dissolution equilibrium of Mn2+ in MVO from fluctuating greatly due to the change of temperature. Therefore, when we use EG@0.2 M MnSO4 + 2 M ZnSO4 (EG + 0.2Mn/2ZSO) electrolyte at −30 °C, the Zn||Zn batteries which used this type of electrolyte can remain 350 h at 1 mA cm–2 without failure. The Zn||Cu batteries can retain 100% Coulombic efficiency after more than 2000 cycles at 0.2 mA cm–2. The Zn||MVO battery can reach 231.13 mA h g–1 at its first cycle, and the capacity retention rate is still above 85% after 1000 cycles, which is higher than that of the existing low-temperature research system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
2秒前
huluwa完成签到,获得积分10
2秒前
YJK发布了新的文献求助10
2秒前
3秒前
3秒前
可燃冰完成签到,获得积分10
4秒前
科研通AI5应助热情蜗牛采纳,获得10
5秒前
娇娇完成签到,获得积分10
5秒前
浮游应助aker采纳,获得10
5秒前
lsl发布了新的文献求助10
5秒前
牟洪梅完成签到,获得积分10
5秒前
无辜忆丹发布了新的文献求助10
6秒前
1号完成签到 ,获得积分10
6秒前
7秒前
烟花应助卡西莫多采纳,获得10
7秒前
8秒前
8秒前
magic7完成签到,获得积分10
8秒前
搞怪的幻梅完成签到,获得积分10
8秒前
仰望小巨人完成签到,获得积分10
8秒前
烂漫的白梦完成签到,获得积分10
9秒前
张伯猪完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
mangata完成签到,获得积分10
12秒前
12秒前
在水一方应助考拉采纳,获得10
12秒前
烟花应助科研狗采纳,获得10
12秒前
jinyue发布了新的文献求助10
13秒前
小吴发布了新的文献求助10
13秒前
张伯猪发布了新的文献求助10
14秒前
冷酷无情小鲨鱼完成签到 ,获得积分10
14秒前
zhfliang完成签到,获得积分10
14秒前
淡然柚子发布了新的文献求助10
14秒前
14秒前
meng完成签到,获得积分10
15秒前
16秒前
16秒前
1yyyyyy完成签到,获得积分10
16秒前
乐乐应助美美桑内采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073899
求助须知:如何正确求助?哪些是违规求助? 4294034
关于积分的说明 13380250
捐赠科研通 4115419
什么是DOI,文献DOI怎么找? 2253626
邀请新用户注册赠送积分活动 1258399
关于科研通互助平台的介绍 1191234