Adaptive Weighted Combination Approach for Wind Power Forecast Based on Deep Deterministic Policy Gradient Method

水准点(测量) 适应性 计算机科学 风电预测 数学优化 电力系统 风力发电 集合(抽象数据类型) 概率预测 功率(物理) 人工智能 工程类 数学 电气工程 物理 大地测量学 生物 量子力学 概率逻辑 程序设计语言 地理 生态学
作者
Menglin Li,Ming Yang,Yixiao Yu,Mohammad Shahidehpour,Fushuan Wen
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:39 (2): 3075-3087 被引量:16
标识
DOI:10.1109/tpwrs.2023.3294839
摘要

Accurate wind power forecast (WPF) is critical for ensuring secure and economic operation of a power system, and combination forecasting approaches for WPF have been proved effective on attaining accurate forecasting results. However, the weights in a combination forecasting model are usually predetermined based on the global performance on the training set, limiting the adaptability of the model to different scenarios. To further enhance the accuracy and effectiveness of the combination forecasting approaches, this article proposes an adaptive weighted combination forecasting approach based on the deep deterministic policy gradient (DDPG) so as to consider the local behavior accompanied by the change of external environment. Three sub-models are first selected considering the equal-likelihood and dispersion indices to construct a combination model. Then, the DDPG agent is trained to act as a weight generator by interacting with the environment and to maximize the reward. Thus, the DDPG agent can perceive the environmental changes online and dynamically weight the sub-models to attain accurate forecasting results. Case studies demonstrate that the forecasting accuracy of the proposed approach is better than that of all sub-models and several benchmark combination forecasting approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助迷路的虔采纳,获得10
刚刚
1秒前
1秒前
贵金属LiLi完成签到,获得积分10
1秒前
Emma应助悲凉的孤萍采纳,获得10
2秒前
2秒前
Jasper应助MOLV采纳,获得10
2秒前
2秒前
慕青应助free采纳,获得10
2秒前
李健的粉丝团团长应助wxy采纳,获得10
2秒前
3秒前
星辰大海应助HDrinnk采纳,获得10
3秒前
今后应助靳欣妍采纳,获得10
3秒前
烂漫夏槐完成签到,获得积分10
4秒前
蛙蛙完成签到,获得积分10
4秒前
ckmen5完成签到,获得积分10
4秒前
Orange应助落寞仰采纳,获得10
6秒前
6秒前
6秒前
CipherSage应助疯狂大泡芙采纳,获得10
6秒前
一半明媚发布了新的文献求助10
6秒前
7秒前
haifenghou发布了新的文献求助10
8秒前
8秒前
9秒前
桐桐应助不一采纳,获得10
9秒前
9秒前
ckmen5发布了新的文献求助10
9秒前
10秒前
10秒前
天天快乐应助南城花开采纳,获得10
10秒前
10秒前
佳佳完成签到,获得积分20
10秒前
小笛子1996发布了新的文献求助10
11秒前
Miaochen发布了新的文献求助10
11秒前
1212431发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
小兰花发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4064684
求助须知:如何正确求助?哪些是违规求助? 3603028
关于积分的说明 11443568
捐赠科研通 3325915
什么是DOI,文献DOI怎么找? 1828427
邀请新用户注册赠送积分活动 898779
科研通“疑难数据库(出版商)”最低求助积分说明 819230