We Chased COVID-19; Did We Forget Measles? - Public Discourse and Sentiment Analysis on Spiking Measles Cases Using Natural Language Processing

麻疹 情绪分析 公共卫生 计算机科学 杠杆(统计) 地球仪 公共话语 数据科学 接种疫苗 公共关系 人工智能 政治学 心理学 医学 病毒学 护理部 神经科学 政治 法学
作者
V. S. Anoop,Jose Thekkiniath,Usharani Hareesh Govindarajan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 147-158 被引量:4
标识
DOI:10.1007/978-3-031-36402-0_13
摘要

This study employs text mining and natural language processing approaches for analyzing and unearthing public discourse and sentiment toward the recent spiking Measles outbreaks reported across the globe. A detailed qualitative study was designed using text mining and natural language processing on the user-generated comments from Reddit, a social news aggregation and discussion website. A detailed analysis using topic modeling and sentiment analysis on Reddit comments (n = 87203) posted between October 1 and December 15, 2022, was conducted. Topic modeling was used to leverage significant themes related to the Measles health emergency and public discourse; the sentiment analysis was performed to check how the general public responded to different aspects of the outbreak. Our results revealed several intriguing and helpful themes, including parental concerns, anti-vaxxer discussions, and measles symptoms from the user-generated content. The results further confirm that even though there have been administrative interventions to promote vaccinations that affirm the parents’ concerns to a greater extent, the anti-vaccination or vaccine hesitancy prevalent in the general public reduces the effect of such intercessions. Proactively analyzing public discourse and sentiments during health emergencies and disease outbreaks is vital. This study effectively explored public perceptions and sentiments to assist health policy researchers and stakeholders in making informed data-driven decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到 ,获得积分10
刚刚
药宫完成签到,获得积分10
刚刚
刚刚
竹前家庆完成签到,获得积分10
刚刚
鲤鱼奇遇完成签到 ,获得积分10
1秒前
1秒前
勤劳的忆雪完成签到,获得积分10
3秒前
土豆发布了新的文献求助30
3秒前
mark完成签到,获得积分10
4秒前
李嘉图完成签到,获得积分10
4秒前
4秒前
大鲁发布了新的文献求助10
4秒前
芋芋给芋芋的求助进行了留言
4秒前
汉堡包应助舒适路人采纳,获得10
4秒前
5秒前
雪轩发布了新的文献求助10
5秒前
溏心儿发布了新的文献求助10
5秒前
东方琉璃完成签到,获得积分10
5秒前
小胡同学完成签到,获得积分10
7秒前
Joyj99发布了新的文献求助10
9秒前
梧桐发布了新的文献求助10
9秒前
9秒前
瓜瓜发布了新的文献求助10
9秒前
9秒前
股价发布了新的文献求助50
10秒前
10秒前
11秒前
大个应助999994采纳,获得10
11秒前
不安的成风完成签到,获得积分10
11秒前
今后应助小胡不爱学习采纳,获得10
12秒前
13秒前
shadow完成签到 ,获得积分10
13秒前
Hello应助xiaowan采纳,获得10
13秒前
戳戳完成签到 ,获得积分10
13秒前
13秒前
14秒前
木子水告完成签到,获得积分10
14秒前
SUS发布了新的文献求助10
15秒前
ww发布了新的文献求助10
16秒前
科研通AI5应助舒适路人采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141