Interpretable prediction of thermal sensation for elderly people based on data sampling, machine learning and SHapley Additive exPlanations (SHAP)

老年人 采样(信号处理) 排名(信息检索) 热舒适性 热感觉 计算机科学 机器学习 人工智能 统计 算法 数学 老年学 电信 医学 气象学 地理 探测器
作者
Guozhong Zheng,Yuqin Zhang,Xuhui Yue,Kang Li
出处
期刊:Building and Environment [Elsevier BV]
卷期号:242: 110602-110602 被引量:28
标识
DOI:10.1016/j.buildenv.2023.110602
摘要

Machine learning (ML) algorithms are frequently used to predict human thermal sensation votes (TSV). Establishing a TSV prediction model for elderly people is essential for improving thermal comfort and ensuring physiological health. This paper aims to combine ML algorithms with data sampling methods to establish a TSV prediction model for elderly people and provide an interpretation of the model based on the SHapley Additive exPlanations (SHAP) method. Firstly, 44 elderly people from 2 pensioners' buildings are recruited as the participants, and the summer environmental parameters, physiological parameters and TSV are collected. Then, 7 ML algorithms and 8 data sampling methods are used to predict the 3-point TSV. Finally, the importance ranking, the positive or negative effects and the interaction of the features are analyzed based on the SHAP method. The results indicate that, the Tomek Links + Synthetic Minority Over Sampling Technique + Xgboost model performs the best. The F1 scores of "cool", "neutral" and "warm" are 73%, 79% and 72%, respectively. Air temperature (TA), mean skin temperature (MST), body mass index (BMI) and relative humidity (RH) are the four most important features. For elderly people in summer, the indoor thermal neutral TA, RH and MST are about 29 °C, 45% and 36 °C, respectively. This paper can be adopted to provide method support for predicting the TSV of elderly people and provide data reference for the indoor environmental parameters of the pensioners' buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjh发布了新的文献求助10
1秒前
1秒前
shadow发布了新的文献求助10
2秒前
王磊发布了新的文献求助10
2秒前
老兵科研发布了新的文献求助10
2秒前
大晨发布了新的文献求助20
3秒前
3秒前
orange9发布了新的文献求助30
3秒前
4秒前
zzh发布了新的文献求助20
4秒前
88mgsure完成签到,获得积分10
4秒前
Chenlinhong发布了新的文献求助10
5秒前
汪洋发布了新的文献求助10
5秒前
CipherSage应助sinan采纳,获得10
6秒前
yao发布了新的文献求助10
6秒前
7秒前
8秒前
JiangY完成签到,获得积分10
9秒前
10秒前
lll完成签到,获得积分10
10秒前
10秒前
一大碗肥肉汁完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
JamesPei应助现实的涵柏采纳,获得10
11秒前
12秒前
shadow完成签到,获得积分10
12秒前
情怀应助zhang-leo采纳,获得10
12秒前
13秒前
LC完成签到,获得积分20
13秒前
15秒前
Lucas应助zjx采纳,获得10
15秒前
15秒前
liuxinyu发布了新的文献求助10
15秒前
啊啊发布了新的文献求助10
15秒前
小全发布了新的文献求助10
17秒前
cimy发布了新的文献求助10
17秒前
无聊的莺发布了新的文献求助10
17秒前
李健的小迷弟应助小丸子采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271