人工智能
气压计
计算机视觉
触觉传感器
机器人学
计算机科学
职位(财务)
机器人
触觉技术
图像分辨率
地理
气象学
财务
经济
作者
Xuyang Li,Yipu Zhang,Xuemei Xie,Jiawei Li,Guangming Shi
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2023-06-26
卷期号:37 (5): 6192-6199
被引量:3
标识
DOI:10.1609/aaai.v37i5.25763
摘要
Human hand has amazing super-resolution ability in sensing the force and position of contact and this ability can be strengthened by practice. Inspired by this, we propose a method for robotic tactile super-resolution enhancement by learning spatiotemporal continuity of contact position and a tactile sensor composed of overlapping air chambers. Each overlapping air chamber is constructed of soft material and seals the barometer inside to mimic adapting receptors of human skin. Each barometer obtains the global receptive field of the contact surface with the pressure propagation in the hyperelastic seal overlapping air chambers. Neural networks with causal convolution are employed to resolve the pressure data sampled by barometers and to predict the contact position. The temporal consistency of spatial position contributes to the accuracy and stability of positioning. We obtain an average super-resolution (SR) factor of over 2500 with only four physical sensing nodes on the rubber surface (0.1 mm in the best case on 38 × 26 mm²), which outperforms the state-of-the-art. The effect of time series length on the location prediction accuracy of causal convolution is quantitatively analyzed in this article. We show that robots can accomplish challenging tasks such as haptic trajectory following, adaptive grasping, and human-robot interaction with the tactile sensor. This research provides new insight into tactile super-resolution sensing and could be beneficial to various applications in the robotics field.
科研通智能强力驱动
Strongly Powered by AbleSci AI