Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning

计算机科学 图像配准 人工智能 任务(项目管理) 医学影像学 深度学习 计算机视觉 图像(数学) 工程类 系统工程
作者
Alessa Hering,Lasse Hansen,Tony C. W. Mok,Albert C. S. Chung,Hanna Siebert,Stephanie Häger,Annkristin Lange,Sven Kuckertz,Stefan Heldmann,Wei Shao,Sulaiman Vesal,Mirabela Rusu,Geoffrey A. Sonn,Théo Estienne,Maria Vakalopoulou,Luyi Han,Yunzhi Huang,Pew‐Thian Yap,Mikael Brudfors,Yaël Balbastre
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 697-712 被引量:130
标识
DOI:10.1109/tmi.2022.3213983
摘要

Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches. The Learn2Reg challenge addresses these limitations by providing a multi-task medical image registration data set for comprehensive characterisation of deformable registration algorithms. A continuous evaluation will be possible at https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation. We established an easily accessible framework for training and validation of 3D registration methods, which enabled the compilation of results of over 65 individual method submissions from more than 20 unique teams. We used a complementary set of metrics, including robustness, accuracy, plausibility, and runtime, enabling unique insight into the current state-of-the-art of medical image registration. This paper describes datasets, tasks, evaluation methods and results of the challenge, as well as results of further analysis of transferability to new datasets, the importance of label supervision, and resulting bias. While no single approach worked best across all tasks, many methodological aspects could be identified that push the performance of medical image registration to new state-of-the-art performance. Furthermore, we demystified the common belief that conventional registration methods have to be much slower than deep-learning-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙珍珍关注了科研通微信公众号
刚刚
1秒前
科研通AI5应助孤独的青曼采纳,获得10
3秒前
科研通AI5应助swwhite采纳,获得10
4秒前
LIN完成签到,获得积分10
5秒前
陶醉的又夏完成签到 ,获得积分10
7秒前
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助sdl采纳,获得10
10秒前
11秒前
13秒前
13秒前
哭泣的又蓝完成签到,获得积分10
13秒前
小蘑菇应助史塔西采纳,获得10
14秒前
Captainhana发布了新的文献求助10
14秒前
冰糖橙子完成签到 ,获得积分10
16秒前
17秒前
魔笛的云宝完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
21秒前
饱满老鼠发布了新的文献求助100
21秒前
聪慧的从雪完成签到 ,获得积分10
21秒前
charitial完成签到,获得积分10
21秒前
xiaobai发布了新的文献求助10
21秒前
努力搞科研完成签到,获得积分10
21秒前
Captainhana完成签到,获得积分10
21秒前
淡然的舞仙完成签到 ,获得积分10
22秒前
sdl发布了新的文献求助10
22秒前
孙珍珍发布了新的文献求助10
23秒前
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841843
求助须知:如何正确求助?哪些是违规求助? 3383892
关于积分的说明 10531716
捐赠科研通 3104036
什么是DOI,文献DOI怎么找? 1709483
邀请新用户注册赠送积分活动 823291
科研通“疑难数据库(出版商)”最低求助积分说明 773873