Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery

多光谱图像 卷积神经网络 人工智能 计算机科学 均方误差 线性回归 预测建模 精准农业 回归 阶段(地层学) 回归分析 深度学习 人工神经网络 模式识别(心理学) 机器学习 数学 统计 农业 地理 古生物学 考古 生物
作者
Ryoya Tanabe,Tsutomu Matsui,Takashi Tanaka
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:291: 108786-108786 被引量:54
标识
DOI:10.1016/j.fcr.2022.108786
摘要

An inexpensive and precise crop yield prediction technology is required for facilitating precision agriculture for Asian countries in which small-scale fields are primarily managed. One of the most popular deep learning methods, convolutional neural networks (CNNs), yield better performances for classification problems than other general machine learning techniques. It is necessarily to verify the effectiveness of CNN for crop yield prediction. To do this, UAV-based multispectral imagery was acquired in four growth stages, including the heading, milk, dough, and ripening stages of winter wheat. The effects of growth stage on yield prediction accuracy were assessed. Furthermore, the effects of the combination of different growth stages on accuracy were assessed using multi-temporal CNN model. The prediction accuracies of CNN models were compared with linear regression models based on a typical vegetation index, enhanced vegetation index 2 (EVI2), as a conventional regression algorithm. The CNN model of the heading stage showed the lowest RMSE (0.94 t ha−1) among the four growth stages and outperformed the best linear regression model (RMSE of 1.00 t ha−1). The prediction accuracies of the multi-temporal CNN, and multiple linear regression models based on EVI2 were less than that of the CNN model of the heading stage. These results suggested that the CNN had the potential to improve the accuracy of yield prediction, and the heading stage was suitable data acquisition time for winter wheat in this study. In addition, the combination of growth stage may not improve the accuracy. Further studies with higher resolution multispectral images and integration of weather data are needed to improve the accuracy and robustness of the model and adaptability for different cultivars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SicilyD完成签到 ,获得积分10
2秒前
2秒前
CipherSage应助hugeng采纳,获得10
2秒前
逍遥发布了新的文献求助10
3秒前
梅子完成签到 ,获得积分10
4秒前
痴情的博超完成签到,获得积分10
5秒前
灵感大王喵完成签到 ,获得积分10
7秒前
月光族完成签到,获得积分10
7秒前
8秒前
9秒前
instanc通完成签到,获得积分20
9秒前
10秒前
大模型应助执着盼夏采纳,获得10
11秒前
zhuwg发布了新的文献求助30
13秒前
山阴路没有夏天完成签到,获得积分10
16秒前
益笙鸿老板完成签到,获得积分10
16秒前
淡定的半梦完成签到 ,获得积分10
17秒前
hs完成签到,获得积分10
18秒前
20秒前
Serena完成签到,获得积分10
20秒前
23秒前
打打应助lemonyu采纳,获得10
25秒前
水知寒完成签到,获得积分10
27秒前
执着盼夏发布了新的文献求助10
29秒前
ding应助11采纳,获得10
30秒前
yinzzzzzzz发布了新的文献求助10
31秒前
31秒前
暴躁汉堡完成签到,获得积分10
33秒前
coolkid应助湖以采纳,获得10
34秒前
翁雁丝发布了新的文献求助10
34秒前
liu123456完成签到,获得积分10
34秒前
充电宝应助lemonyu采纳,获得10
36秒前
37秒前
37秒前
Cyan发布了新的文献求助10
37秒前
feijelly完成签到,获得积分10
40秒前
执着盼夏完成签到,获得积分20
41秒前
思源应助ZR采纳,获得10
41秒前
yinzzzzzzz完成签到,获得积分10
41秒前
听白完成签到,获得积分10
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846100
求助须知:如何正确求助?哪些是违规求助? 3388485
关于积分的说明 10553181
捐赠科研通 3109045
什么是DOI,文献DOI怎么找? 1713300
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982