A graph-based neural network approach to integrate multi-source data for urban building function classification

计算机科学 人工神经网络 功能(生物学) 图形 人工智能 数据挖掘 机器学习 理论计算机科学 进化生物学 生物
作者
Bo Kong,Tinghua Ai,Xinyan Zou,Xiongfeng Yan,Min Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:110: 102094-102094 被引量:12
标识
DOI:10.1016/j.compenvurbsys.2024.102094
摘要

Accurately understanding the functions of buildings is crucial for urban monitoring, analysis of urban economic structures, and effectively allocating resources. Previous studies have investigated building function classification using single or dual data sources. However, the complexity of building functions cannot be fully reflected by a limited number of data sources. In addition, the functions of adjacent buildings often exhibit correlations, and contextual information between buildings has been ignored in previous studies. To address these problems, we propose a graph-based neural network (GNN) approach for building function classification that integrates multi-source data and mines contextual information between buildings. This approach initially extracts four types of features related to building functions: morphological features from vector-buildings, visual features from street-view images, spectral features from satellite images, and socio-economic features from points of interest. The buildings are then modeled as a graph, where the nodes and edges represent the buildings and their proximity. Descriptive features of the nodes were obtained by concatenating the aforementioned features. Finally, the constructed graph was fed into the GraphSAmple and aggreGatE (GraphSAGE) model, which is a typical GNN model for building function classification. The experimental results showed that our approach achieved an F1-score of 91.0%, which was 10.3–12.6% higher than that of the three comparison approaches. In addition, ablation experiments using different data sources revealed that the four data sources were complementary to each other and contributed to improving the building function classification. Our strategy provides an alternative and efficient solution for building function classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邹随阴发布了新的文献求助10
2秒前
充电宝应助负责的方盒采纳,获得10
2秒前
核桃应助清零采纳,获得10
2秒前
3秒前
张亚慧完成签到,获得积分10
3秒前
3秒前
共产主义战士完成签到,获得积分10
3秒前
Alice发布了新的文献求助30
3秒前
JianYugen完成签到,获得积分0
4秒前
YMP发布了新的文献求助10
4秒前
隐形曼青应助周小鱼采纳,获得30
5秒前
5秒前
5秒前
zhangpeng发布了新的文献求助10
6秒前
幼儿园扛把子完成签到 ,获得积分10
6秒前
p_kunnnn完成签到,获得积分10
7秒前
Yiaxuan发布了新的文献求助20
7秒前
小张完成签到,获得积分10
7秒前
8秒前
谦让的西装完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
、、、完成签到,获得积分10
10秒前
11秒前
zzz完成签到,获得积分10
11秒前
xxx发布了新的文献求助10
12秒前
魔幻的微笑完成签到,获得积分10
12秒前
Joeswith完成签到,获得积分10
12秒前
七七完成签到,获得积分10
12秒前
李健的小迷弟应助wdlc采纳,获得10
13秒前
李健的小迷弟应助曾经阁采纳,获得10
13秒前
852应助111采纳,获得10
13秒前
13秒前
14秒前
14秒前
koi发布了新的文献求助10
14秒前
277发布了新的文献求助30
14秒前
你说什么我听不见完成签到,获得积分10
15秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828500
求助须知:如何正确求助?哪些是违规求助? 3370806
关于积分的说明 10465265
捐赠科研通 3090821
什么是DOI,文献DOI怎么找? 1700556
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770571