Structural optimization and growth of intrinsic hydrogenated amorphous silicon films by HWCVD

非晶硅 材料科学 无定形固体 化学 化学工程 纳米技术 光电子学 晶体硅 结晶学 工程类
作者
Hongchen Meng,Xiaoyuan Wu,Fa‐Jun Ma,Qingguo Zeng,Lang Zhou
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier BV]
卷期号:271: 112835-112835 被引量:3
标识
DOI:10.1016/j.solmat.2024.112835
摘要

Although the silicon heterojunction (SHJ) solar cell is the crystalline silicon solar cell with highest conversion efficiency at present, its higher cost of production line has been a factor restricting its industrial development. The use of hot wire chemical vapor deposition (HWCVD) technology instead of the mainstream plasma enhanced chemical vapor deposition (PECVD) technology for the deposition of amorphous silicon films can effectively reduce the cost of equipment and processing, and has a bright future. In recent years, i-a-Si:H films grown by PECVD have obtained great improvement in passivation quality, whereas HWCVD technology has been neglected in this field. This has significantly limited the development and application of HWCVD technology in SHJ cell production. In this work, we exploited the differences in the films properties and microstructures deposited by various hot-wire temperatures and successfully developed a structure for the high-passivation-quality i-a-Si:H film grown by HWCVD, consisting of a buffer layer and a double-layer bulk stack. By introducing the buffer layer grown with the 1650 °C hot-wire temperature and pure silane, the effective minority carrier lifetime was improved from 2.3 ms to 7.5 ms, and a cell efficiency enhancement of 0.4%abs was obtained. By depositing the bulk layer sequentially with hot-wire temperatures of 1800 °C and 1900 °C, the passivation quality and the conductance were both improved. An effective minority carrier lifetime of 8 ms and a further cell efficiency enhancement of 0.15%abs were obtained. Finally, SHJ solar cell efficiency of 24.35% was obtained with a home-made HWCVD-based pilot SHJ cell line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张若愚发布了新的文献求助10
刚刚
ymx完成签到,获得积分10
刚刚
刚刚
饱满板栗发布了新的文献求助10
2秒前
chichi应助zzz采纳,获得10
2秒前
FashionBoy应助叶耶耶采纳,获得10
2秒前
2秒前
可爱的函函应助安白采纳,获得10
3秒前
科研通AI5应助凭什么采纳,获得10
4秒前
scanker1981完成签到,获得积分10
6秒前
rinki发布了新的文献求助10
6秒前
祺思妙想完成签到 ,获得积分10
7秒前
7秒前
HeAuBook完成签到,获得积分0
7秒前
沉静从露发布了新的文献求助10
7秒前
qq完成签到 ,获得积分10
7秒前
8秒前
充电宝应助Mandy采纳,获得10
10秒前
所所应助Mandy采纳,获得10
10秒前
ding应助Mandy采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
阴晴发布了新的文献求助10
12秒前
liwenwen完成签到,获得积分10
13秒前
叶耶耶发布了新的文献求助10
14秒前
共享精神应助沉静从露采纳,获得10
14秒前
harry2021完成签到,获得积分10
14秒前
佟谷兰发布了新的文献求助10
16秒前
16秒前
丘比特应助rinki采纳,获得10
17秒前
安白完成签到,获得积分10
18秒前
袁大头发布了新的文献求助10
18秒前
笑点低若之完成签到,获得积分10
18秒前
英俊的铭应助若尘采纳,获得10
19秒前
我是老大应助香香丿采纳,获得10
20秒前
安白发布了新的文献求助10
21秒前
qq发布了新的文献求助10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154067
求助须知:如何正确求助?哪些是违规求助? 3689977
关于积分的说明 11656319
捐赠科研通 3382228
什么是DOI,文献DOI怎么找? 1856000
邀请新用户注册赠送积分活动 917661
科研通“疑难数据库(出版商)”最低求助积分说明 831083