Robust engine slipping start control of hybrid electric vehicles with uncertainty in clutch slipping torque and change in driver demand torque

滑倒 离合器 扭矩 汽车工程 控制理论(社会学) 失速转矩 扭矩转向 工程类 电动汽车 计算机科学 控制(管理) 直接转矩控制 机械工程 功率(物理) 物理 电压 电气工程 方向盘 量子力学 人工智能 感应电动机 热力学
作者
Peng Cheng,Li Chen
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:46 (16): 3239-3256 被引量:1
标识
DOI:10.1177/01423312241236522
摘要

The engine slipping start (ESS) benefits parallel hybrid electric vehicles from stable ignition and emission reduction. However, inappropriate coordination between the traction motor torque and clutch slipping torque during the ESS will lead to poor smoothness of the vehicle and failed start of the engine. Uncertainty in clutch slipping torque and change in driver demand torque bring tough challenges with sluggish convergence and intensive vehicle jerk in practice. To deal with this problem, a novel two-layer model reference adaptive controller (MRAC) which contains two parallel reference models is proposed to improve robustness and convergence rate simultaneously. On one hand, uncertainties of clutch slipping torque are divided into a low-frequency part and a high-frequency part, and adaptive laws based on the output feedback are designed contrapuntally to enhance robustness. On the other hand, two parallel reference models are designed to accelerate the tracking error convergence rate without changing the reference profiles, which is generated according to the driver demand torque in real time. To test the robustness and convergence rate, the proposed two-layer MRAC is compared with the classical MRAC and proportional–integral controller under the driving scenario with uncertain clutch slipping torque and abrupt change in driver demand torque. The sensitivity with different adaptive gains and low-frequency and high-frequency uncertainties in clutch slipping torque are examined. Finally, hardware-in-the-loop experiments are performed to verify the effectiveness of the proposed two-layer MRAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助口袋小镇采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Lucas应助onetec采纳,获得10
3秒前
Owen应助LGRrong采纳,获得10
4秒前
5秒前
吃猫的鱼发布了新的文献求助10
6秒前
小蘑菇应助妄自采纳,获得10
7秒前
无极微光应助老毛采纳,获得20
7秒前
抹茶二锅头完成签到,获得积分20
8秒前
思源应助简单夜山采纳,获得10
8秒前
边疆发布了新的文献求助10
10秒前
果粒陈完成签到,获得积分20
10秒前
11秒前
爱科研的小凡完成签到,获得积分10
11秒前
11秒前
脑洞疼应助chengleigogo采纳,获得10
12秒前
13秒前
15秒前
英姑应助tina6918采纳,获得10
15秒前
15秒前
Tingting发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
onetec发布了新的文献求助10
18秒前
爆米花应助JEssie采纳,获得10
19秒前
20秒前
青年才俊发布了新的文献求助10
20秒前
妄自发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
zsyhcl完成签到,获得积分10
26秒前
27秒前
QJ关闭了QJ文献求助
27秒前
大观天下发布了新的文献求助10
28秒前
科研助理发布了新的文献求助10
29秒前
彪壮的斩完成签到,获得积分10
29秒前
renhu发布了新的文献求助10
31秒前
32秒前
lkp发布了新的文献求助10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453226
求助须知:如何正确求助?哪些是违规求助? 4560973
关于积分的说明 14280003
捐赠科研通 4484875
什么是DOI,文献DOI怎么找? 2456349
邀请新用户注册赠送积分活动 1447163
关于科研通互助平台的介绍 1422583