已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion

材料科学 纳米纤维 纳米技术 反向电渗析 化学工程 纳米流体学 化学 电渗析 生物化学 工程类
作者
Abuduheiremu Awati,Shan Zhou,Ting Shi,Jie Zeng,Ran Yang,Yanjun He,Xin Zhang,Hui Zeng,Dazhang Zhu,Tongcheng Cao,Lei Xie,Mingxian Liu,Biao Kong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (22): 27075-27088 被引量:18
标识
DOI:10.1021/acsami.3c03464
摘要

Capturing the abundant salinity gradient power into electric power by nanofluidic systems has attracted increasing attention and has shown huge potential to alleviate the energy crisis and environmental pollution problems. However, not only the imbalance between permeability and selectivity but also the poor stability and high cost of traditional membranes limit their scale-up realistic applications. Here, intertwined "soft-hard" nanofibers/tubes are densely super-assembled on the surface of anodic aluminum oxide (AAO) to construct a heterogeneous nanochannel membrane, which exhibits smart ion transport and improved salinity gradient power conversion. In this process, one-dimensional (1D) "soft" TEMPO-oxidized cellulose nanofibers (CNFs) are wrapped around "hard" carbon nanotubes (CNTs) to form three-dimensional (3D) dense nanochannel networks, subsequently forming a CNF-CNT/AAO hybrid membrane. The 3D nanochannel networks constructed by this intertwined "soft-hard" nanofiber/tube method can significantly enhance the membrane stability while maintaining the ion selectivity and permeability. Furthermore, benefiting from the asymmetric structure and charge polarity, the hybrid nanofluidic membrane displays a low membrane inner resistance, directional ionic rectification characteristics, outstanding cation selectivity, and excellent salinity gradient power conversion performance with an output power density of 3.3 W/m2. Besides, a pH sensitive property of the hybrid membrane is exhibited, and a higher power density of 4.2 W/m2 can be achieved at a pH of 11, which is approximately 2 times more compared to that of pure 1D nanomaterial based homogeneous membranes. These results indicate that this interfacial super-assembly strategy can provide a way for large-scale production of nanofluidic devices for various fields including salinity gradient energy harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas应助wangqingxia采纳,获得30
1秒前
1秒前
所所应助linxt采纳,获得10
3秒前
3秒前
liber发布了新的文献求助10
3秒前
阿萨德完成签到,获得积分10
3秒前
甜甜的小土豆完成签到,获得积分10
3秒前
samuel完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
隐形曼青应助宝剑葫芦采纳,获得10
6秒前
Somogyis发布了新的文献求助10
8秒前
李健应助内向初兰采纳,获得10
8秒前
阿萨德发布了新的文献求助10
9秒前
cai驳回了情怀应助
9秒前
10秒前
11秒前
11秒前
ding应助鲁棒的砰砰砰采纳,获得10
11秒前
打打应助鲁棒的砰砰砰采纳,获得10
11秒前
11秒前
顾矜应助老实蛋挞采纳,获得10
12秒前
15秒前
钦川发布了新的文献求助10
15秒前
Somogyis完成签到,获得积分10
16秒前
酷波er应助kk采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
无极微光应助科研通管家采纳,获得20
17秒前
持卿应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
andrele应助科研通管家采纳,获得10
17秒前
17秒前
Akim应助科研通管家采纳,获得30
17秒前
卿卿完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606317
求助须知:如何正确求助?哪些是违规求助? 4690721
关于积分的说明 14865349
捐赠科研通 4704691
什么是DOI,文献DOI怎么找? 2542558
邀请新用户注册赠送积分活动 1508054
关于科研通互助平台的介绍 1472245