Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction

化学 烧结 制作 离子电导率 电导率 快离子导体 化学计量学 离子键合 化学工程 原材料 相(物质) 密度泛函理论 固态 物理化学 计算化学 电解质 有机化学 离子 电极 替代医学 病理 工程类 医学
作者
Zizhuo Liang,Fuming Du,Ning Zhao,Xiangxin Guo
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:42 (11): 100108-100108 被引量:29
标识
DOI:10.1016/j.cjsc.2023.100108
摘要

NASICON type Li3Zr2Si2PO12 can be synthesized via cation exchange method with Na3Zr2Si2PO12 as precursor, which retains the skeleton structure and achieves an ionic conductivity higher than 3 ​mS ​cm−1 at room temperature. However, large-scale fabrication via cation exchange reaction seems unlikely considering the expensive precursors and complicated preparation process. Herein, the viability of solid-state reaction to prepare Li3Zr2Si2PO12 is explored, which has important implication for its industrialization. The sintering was conducted using the raw materials of LiOH, SiO2, ZrO2 and NH4H2PO4 with the nominal stoichiometric ratio of Li3Zr2Si2PO12. The results show that the final product is a Li3PO4·2ZrSiO4 composite with negligible Li​+ ​conductivity, other than the expected Li3Zr2Si2PO12 with high Li​+ ​conductivity. Combined with thermodynamic calculations based on density functional theory (DFT), the competition between Li3PO4·2ZrSiO4 and Li3Zr2Si2PO12 with NASICON phase is analyzed. It was found that the formation energy (ΔG) of Li3PO4·2ZrSiO4 is lower than that of Li3Zr2Si2PO12. In addition, the decomposition of Li3Zr2Si2PO12 with Li3PO4·2ZrSiO4 as products is a thermodynamically spontaneous reaction. The influences related to the coordination structures on the structural stability of NZSP are discussed as well. These results demonstrate that the fabrication of Li3Zr2Si2PO12 through high-temperature sintering is difficult, and the development of a synthetic method with mild conditions is essential for the Li3Zr2Si2PO12 preparation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
酷波er应助呃呃呃采纳,获得10
2秒前
3秒前
孔孔完成签到,获得积分10
3秒前
liux完成签到,获得积分10
3秒前
ling玲完成签到,获得积分20
4秒前
斯文败类应助jfz采纳,获得10
5秒前
5秒前
小蘑菇应助六个核桃采纳,获得10
6秒前
6秒前
搜集达人应助一一采纳,获得10
6秒前
7秒前
Lucas应助帅气的白桃采纳,获得10
7秒前
imp发布了新的文献求助30
7秒前
aich发布了新的文献求助10
9秒前
ling玲发布了新的文献求助10
9秒前
ding发布了新的文献求助10
10秒前
123发布了新的文献求助10
12秒前
霍嚯嚯嚯完成签到,获得积分10
13秒前
15秒前
15秒前
pb完成签到,获得积分10
16秒前
11完成签到,获得积分10
16秒前
翟如风完成签到,获得积分10
17秒前
烜66完成签到,获得积分10
18秒前
001发布了新的文献求助10
19秒前
Akim应助周萌采纳,获得10
20秒前
XWK发布了新的文献求助10
20秒前
Thrain关注了科研通微信公众号
20秒前
22秒前
夏夜白完成签到,获得积分10
22秒前
vkukrsk关注了科研通微信公众号
23秒前
松绿格发布了新的文献求助10
23秒前
xiaofeixia完成签到 ,获得积分10
24秒前
25秒前
25秒前
wingsdy发布了新的文献求助30
25秒前
脑洞疼应助韩凡采纳,获得10
25秒前
Daria发布了新的文献求助10
26秒前
救赎完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926910
求助须知:如何正确求助?哪些是违规求助? 3471578
关于积分的说明 10968980
捐赠科研通 3201439
什么是DOI,文献DOI怎么找? 1768790
邀请新用户注册赠送积分活动 857689
科研通“疑难数据库(出版商)”最低求助积分说明 796109