Beyond Single Dopants: The Chemistry of Multi-Atom Doping in Hematite Photoanodes for Water Splitting

掺杂剂 兴奋剂 材料科学 赤铁矿 分解水 纳米技术 带隙 化学物理 光电子学 化学 催化作用 光催化 冶金 生物化学
作者
Bibhuti Kumar Jha,Ji‐Hyun Jang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.5c09004
摘要

Despite its great potential for solar-driven hydrogen production, including its noncorrosive nature, suitable bandgap (1.9–2.2 eV), abundance, high theoretical efficiency (15.4%), and photochemical stability, hematite photoanodes face limitations such as poor conductivity, low charge separation efficiency, short hole diffusion length (2–4 nm), and high onset potential. To address these challenges, several strategies have been investigated, including nanostructuring, morphological tuning, compositing, and doping. Among these, doping has proven to be the most effective, owing to its relative simplicity and significant impact on key properties. Each dopant plays a distinct role: Ti, Sn, Zr, and Ta enhance conductivity and band structure; Al and Si improve stability and reduce recombination; while Mn and Co boost catalytic activity. Despite extensive studies on single-element doping, multielement (co)doping remains limited, particularly in understanding synergistic effects. In this perspective, we discuss how the limitations introduced by one dopant can be mitigated through the incorporation of another. For example, Ge- or Sn-doped hematite exhibits high formation energies, while Al doping induces significant lattice shrinkage. However, introducing Ti into such systems can simultaneously reduce the formation energy and minimize strain, making hematite a more stable and efficient photoanode. We strategically explore the chemistry of combining dopants, particularly metal–metal and metal–nonmetal pairs, to tackle multiple bottlenecks concurrently. This perspective highlights these emerging concepts as a scalable and rational approach to unlocking the full potential of hematite-based photoanodes for efficient solar water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepvvvvirtue完成签到 ,获得积分10
刚刚
Lucas完成签到,获得积分10
1秒前
李好人发布了新的文献求助10
1秒前
勤恳的月亮完成签到,获得积分10
1秒前
lty发布了新的文献求助10
1秒前
明写春诗完成签到,获得积分10
1秒前
阿元发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助科研果采纳,获得10
3秒前
3秒前
cathy完成签到 ,获得积分10
3秒前
豆豆完成签到,获得积分10
4秒前
4秒前
懦弱的乐荷完成签到,获得积分10
5秒前
5秒前
努力游游完成签到,获得积分10
6秒前
务实的元菱完成签到,获得积分10
6秒前
6秒前
zuozuo发布了新的文献求助10
6秒前
BadaVox完成签到,获得积分10
6秒前
6秒前
Xander发布了新的文献求助10
6秒前
芋头发布了新的文献求助10
6秒前
7秒前
JamesPei应助无奈的小虾米采纳,获得10
7秒前
852应助Vinny采纳,获得10
7秒前
8秒前
忧心的天菱完成签到,获得积分10
8秒前
地雷发布了新的文献求助10
8秒前
BadaVox发布了新的文献求助30
9秒前
9秒前
银角大王完成签到,获得积分10
9秒前
Jasper应助草帽采纳,获得10
9秒前
ll发布了新的文献求助10
9秒前
可爱的函函应助CCD采纳,获得10
10秒前
来篇nature完成签到 ,获得积分10
10秒前
11秒前
尉迟希望应助ACE采纳,获得10
11秒前
11秒前
寒冷白开水完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082313
求助须知:如何正确求助?哪些是违规求助? 4299625
关于积分的说明 13396791
捐赠科研通 4123476
什么是DOI,文献DOI怎么找? 2258410
邀请新用户注册赠送积分活动 1262642
关于科研通互助平台的介绍 1196655