Evaluating the Potential of Improving In-Season Potato Nitrogen Status Diagnosis Using Leaf Fluorescence Sensor as Compared with SPAD Meter

环境科学 遥感 荧光 光学 地理 物理 天文
作者
Seiya Wakahara,Yuxin Miao,Dan Li,Jizong Zhang,Sanjay Gupta,Carl J. Rosen
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (13): 2311-2311
标识
DOI:10.3390/rs17132311
摘要

The petiole nitrate–nitrogen concentration (PNNC) has been an industry standard indicator for in-season potato (Solanum tuberosum L.) nitrogen (N) status diagnosis. Leaf sensors can be used to predict the PNNC and other N status indicators non-destructively. The SPAD meter is a common leaf chlorophyll (Chl) meter, while the Dualex is a newer leaf fluorescence sensor. Limited research has been conducted to compare the two leaf sensors for potato N status assessment. Therefore, the objectives of this study were to (1) compare SPAD and Dualex for predicting potato N status indicators, and (2) evaluate the potential prediction improvement using multi-source data fusion. The plot-scale experiments were conducted in Becker, Minnesota, USA, in 2018, 2019, 2021, and 2023, involving different cultivars, N treatments, and irrigation rates. The results indicated that Dualex’s N balance index (NBI; Chl/Flav) always outperformed Dualex Chl but did not consistently perform better than the SPAD meter. All N status indicators were predicted with significantly higher accuracy with multi-source data fusion using machine learning models. A practical strategy was developed using a linear support vector regression model with SPAD, cultivar information, accumulated growing degree days, accumulated total moisture, and an as-applied N rate to predict the vine or whole-plant N nutrition index (NNI), achieving an R2 of 0.80–0.82, accuracy of 0.75–0.77, and Kappa statistic of 0.57–0.58 (near-substantial). Further research is needed to develop an easy-to-use application and corresponding in-season N recommendation strategy to facilitate practical on-farm applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13280939791发布了新的文献求助10
3秒前
fuje发布了新的文献求助10
4秒前
善学以致用应助等待听安采纳,获得10
4秒前
阿萨大大完成签到,获得积分10
5秒前
完美世界应助山茱萸采纳,获得10
10秒前
13280939791完成签到,获得积分20
15秒前
米里迷路完成签到 ,获得积分10
18秒前
小蘑菇应助比巴卜采纳,获得10
21秒前
22秒前
26秒前
27秒前
HOPE发布了新的文献求助200
27秒前
xzy998应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
28秒前
鸣笛应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
鸣笛应助科研通管家采纳,获得10
28秒前
nihao应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
田様应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
yuqiu完成签到,获得积分10
30秒前
苑阿宇发布了新的文献求助10
32秒前
LeungYM发布了新的文献求助10
32秒前
tao完成签到,获得积分10
33秒前
刘颖发布了新的文献求助10
34秒前
脑洞疼应助Nanami_ii采纳,获得10
34秒前
36秒前
骄阳完成签到 ,获得积分10
37秒前
汤疾完成签到,获得积分10
37秒前
tao发布了新的文献求助10
37秒前
liangliang发布了新的文献求助10
40秒前
40秒前
42秒前
wuran发布了新的文献求助10
42秒前
43秒前
YYY完成签到,获得积分10
44秒前
Lucas应助ins采纳,获得10
45秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084201
求助须知:如何正确求助?哪些是违规求助? 3623337
关于积分的说明 11494125
捐赠科研通 3337837
什么是DOI,文献DOI怎么找? 1835030
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821806