Event-Enhanced Snapshot Compressive Videography at 10K FPS

录像 快照(计算机存储) 计算机科学 计算机视觉 人工智能 计算机图形学(图像) 视觉艺术 艺术 操作系统
作者
Bo Zhang,Jinli Suo,Qionghai Dai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (2): 1266-1278 被引量:2
标识
DOI:10.1109/tpami.2024.3496788
摘要

Video snapshot compressive imaging (SCI) encodes the target dynamic scene compactly into a snapshot and reconstructs its high-speed frame sequence afterward, greatly reducing the required data footprint and transmission bandwidth as well as enabling high-speed imaging with a low frame rate intensity camera. In implementation, high-speed dynamics are encoded via temporally varying patterns, and only frames at corresponding temporal intervals can be reconstructed, while the dynamics occurring between consecutive frames are lost. To unlock the potential of conventional snapshot compressive videography, we propose a novel hybrid "intensity event imaging scheme by incorporating an event camera into a video SCI setup. Our proposed system consists of a dual-path optical setup to record the coded intensity measurement and intermediate event signals simultaneously, which is compact and photon-efficient by collecting the half photons discarded in conventional video SCI. Correspondingly, we developed a dual-branch Transformer utilizing the reciprocal relationship between two data modes to decode dense video frames. Extensive experiments on both simulated and real-captured data demonstrate our superiority to state-of-the-art video SCI and video frame interpolation (VFI) methods. Benefiting from the new hybrid design leveraging both intrinsic redundancy in videos and the unique feature of event cameras, we achieve high-quality videography at 0.1ms time intervals with a low-cost CMOS image sensor working at 24 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syy080837发布了新的文献求助10
2秒前
星辰大海应助埃森采纳,获得10
6秒前
Kenny完成签到,获得积分10
8秒前
学术混子雷雷雷雷雷完成签到,获得积分10
11秒前
huang完成签到,获得积分10
12秒前
16秒前
往事不可挽回完成签到 ,获得积分10
18秒前
王英俊完成签到,获得积分10
20秒前
小马甲应助GongSyi采纳,获得10
22秒前
梧桐发布了新的文献求助10
22秒前
土豆丝关注了科研通微信公众号
24秒前
syy080837完成签到,获得积分10
26秒前
wxyshare举报小巧初露求助涉嫌违规
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
孙_boss完成签到 ,获得积分10
27秒前
Mic应助科研通管家采纳,获得10
27秒前
27秒前
浮游应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
Verity应助科研通管家采纳,获得10
28秒前
ysl应助科研通管家采纳,获得10
28秒前
Mic应助科研通管家采纳,获得10
28秒前
Bsisoy完成签到,获得积分10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
28秒前
浮游应助科研通管家采纳,获得10
28秒前
宅多点应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
28秒前
浮游应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915