Dynamic Spatio-temporal Graph Neural Network for Surrounding-aware Trajectory Prediction of Autonomous Vehicles

计算机科学 弹道 人工神经网络 图形 人工智能 实时计算 理论计算机科学 物理 天文
作者
Hashmatullah Sadid,Constantinos Antoniou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tiv.2024.3406507
摘要

Trajectory prediction is a critical aspect of understanding and estimating the motion of dynamic systems, including robotics and autonomous vehicles (AVs). For safe and efficient driving behavior, an AV should predict its own motion and the motions of surrounding vehicles in the upcoming time steps. To achieve this, understanding the interaction among vehicles is crucial for accurate trajectory prediction. In this research, we implement a dynamic Spatio-temporal graph convolutional network to predict the trajectory distribution of vehicles in a traffic scene. We perform the graph convolutional network (GCN) operation on directed graphs to capture the spatial dependencies among vehicles in each traffic scene. To accurately replicate the interaction among vehicles, we propose a novel weighted adjacency matrix derived by the strategic positions of vehicles (angular encoding) and the reciprocal of distances among vehicles in a traffic scene. Additionally, we employ the temporal convolution network (TCN) to learn the temporal dependencies of a trajectory sequence and decode the future driving status using historic trajectories. We test the model with a naturalistic trajectory dataset (HighD) and conduct performance evaluation. The findings reveal that the proposed model could significantly improve accuracy compared to existing state-of-the-art models. Meanwhile, we conduct transfer learning to test the generalizability of our model on low data availability scenario using NGSIM (US-101) dataset. The results show that the relearned model perform comparability well and depicts competing performance in comparison to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的雅青完成签到 ,获得积分10
1秒前
HUSH994完成签到,获得积分10
1秒前
zzmmyygg完成签到,获得积分20
1秒前
聪慧的从雪完成签到 ,获得积分10
2秒前
邓布利多发布了新的文献求助20
2秒前
3秒前
何以解忧完成签到,获得积分10
3秒前
SYLH应助林黛玉倒拔垂杨柳采纳,获得10
4秒前
4秒前
脑洞疼应助典雅的俊驰采纳,获得10
4秒前
兴奋的白秋完成签到,获得积分10
4秒前
xcc完成签到,获得积分10
4秒前
5秒前
霸王爱吃面给霸王爱吃面的求助进行了留言
5秒前
三国杀启动完成签到,获得积分10
5秒前
平淡思雁完成签到,获得积分10
5秒前
orixero应助郑zhenglanyou采纳,获得10
5秒前
6秒前
赘婿应助秋澄采纳,获得10
6秒前
清风完成签到,获得积分10
6秒前
Ivyxie完成签到,获得积分10
6秒前
甜心完成签到,获得积分10
7秒前
7秒前
7秒前
无聊的纸飞机完成签到,获得积分10
8秒前
颜靖仇发布了新的文献求助10
10秒前
奋斗的冬云完成签到,获得积分10
10秒前
Ashley完成签到,获得积分10
10秒前
一字曰心完成签到,获得积分10
10秒前
z落水无痕完成签到,获得积分10
10秒前
海意完成签到,获得积分10
11秒前
能干亦玉完成签到,获得积分10
11秒前
stt1011发布了新的文献求助10
12秒前
Gao发布了新的文献求助10
12秒前
Rae发布了新的文献求助30
12秒前
12秒前
12秒前
12秒前
JamesPei应助N1koooooo采纳,获得10
13秒前
bkagyin应助wanda采纳,获得30
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730