Tab-Cox: An Interpretable Deep Survival Analysis Model for Patients With Nasopharyngeal Carcinoma Based on TabNet

可解释性 鼻咽癌 机器学习 比例危险模型 医学诊断 人工神经网络 医学 生存分析 人工智能 计算机科学 数据挖掘 内科学 放射治疗 病理
作者
Huamei Qi,Yuxuan Hu,Ruohao Fan,Lei Deng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4937-4950 被引量:1
标识
DOI:10.1109/jbhi.2024.3397955
摘要

The nutritional status of cancer patients is closely associated with the clinical progression of the disease. A survival analysis model combined with a neural network can predict future disease trends in patients, facilitating early prevention and assisting physicians in making diagnoses. However, the complexity of neural networks and their incompatibility with medical tabular data can reduce the interpretability of the model. To address this issue, thr paper propose a novel survival analysis model called Tab-Cox, which combines TabNet and Cox models. This model is specifically designed to predict the survival outcomes of patients with nasopharyngeal carcinoma. The model utilizes TabNet's sequential attention mechanism to extract more interpretable features, providing an interpretable method for identifying disease risk factors. Consequently, the model ensures accurate survival prediction while also making the results more comprehensible for both patients and doctors. The paper tested the efficacy of the model by conducting experiments on various diverse datasets in comparison with other commonly used survival models. The results showed that the proposed model delivered the highest or second-highest accuracy across all datasets. Furthermore, the paper conducted a comparative interpretability analysis against the classical Cox model. In addition and compare the interpretability of the Tab-Cox model with the classical Cox model and discuss the advantages and disadvantages of its interpretability. This demonstrates that Tab-Cox can assist doctors in identifying risk factors that are challenging to capture using artificial methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy完成签到,获得积分10
1秒前
东北信风完成签到,获得积分10
1秒前
共享精神应助温匕采纳,获得10
1秒前
tang应助聪慧的梦安采纳,获得10
2秒前
王三金发布了新的文献求助10
2秒前
小鹿完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助ZHAOYUN采纳,获得10
3秒前
鹿c3完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
怡然毛豆完成签到,获得积分10
8秒前
匀速前行完成签到,获得积分10
8秒前
12彡完成签到 ,获得积分10
9秒前
9秒前
王三金完成签到,获得积分10
9秒前
chen发布了新的文献求助10
10秒前
winnerbing发布了新的文献求助10
11秒前
bz关注了科研通微信公众号
11秒前
匀速前行发布了新的文献求助10
12秒前
斯奈克发布了新的文献求助10
12秒前
隐形曼青应助科研牛人采纳,获得10
14秒前
是个i人完成签到,获得积分10
14秒前
支焱完成签到,获得积分10
14秒前
sdl发布了新的文献求助10
14秒前
16秒前
工作还是工作完成签到,获得积分20
17秒前
17秒前
17秒前
认真勒完成签到 ,获得积分10
18秒前
小二郎应助王淳采纳,获得20
19秒前
xiexuqin完成签到,获得积分10
20秒前
20秒前
cccjs发布了新的文献求助10
20秒前
传奇3应助阿敬采纳,获得10
20秒前
21秒前
明理的戾发布了新的文献求助10
21秒前
22秒前
完美世界应助点金石采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974062
求助须知:如何正确求助?哪些是违规求助? 3518238
关于积分的说明 11193800
捐赠科研通 3254408
什么是DOI,文献DOI怎么找? 1797154
邀请新用户注册赠送积分活动 876854
科研通“疑难数据库(出版商)”最低求助积分说明 806041