MACFNet: Detection of Alzheimer's disease via multiscale attention and cross-enhancement fusion network

计算机科学 融合 疾病 人工智能 阿尔茨海默病 医学 病理 哲学 语言学
作者
Chaosheng Tang,Mengbo Xi,Junding Sun,Shuihua Wang‎,Yudong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108259-108259 被引量:3
标识
DOI:10.1016/j.cmpb.2024.108259
摘要

Alzheimer's disease (AD) is a dreaded degenerative disease that results in a profound decline in human cognition and memory. Due to its intricate pathogenesis and the lack of effective therapeutic interventions, early diagnosis plays a paramount role in AD. Recent research based on neuroimaging has shown that the application of deep learning methods by multimodal neural images can effectively detect AD. However, these methods only concatenate and fuse the high-level features extracted from different modalities, ignoring the fusion and interaction of low-level features across modalities. It consequently leads to unsatisfactory classification performance. In this paper, we propose a novel multi-scale attention and cross-enhanced fusion network, MACFNet, which enables the interaction of multi-stage low-level features between inputs to learn shared feature representations. We first construct a novel Cross-Enhanced Fusion Module (CEFM), which fuses low-level features from different modalities through a multi-stage cross-structure. In addition, an Efficient Spatial Channel Attention (ECSA) module is proposed, which is able to focus on important AD-related features in images more efficiently and achieve feature enhancement from different modalities through two-stage residual concatenation. Finally, we also propose a multiscale attention guiding block (MSAG) based on dilated convolution, which can obtain rich receptive fields without increasing model parameters and computation, and effectively improve the efficiency of multiscale feature extraction. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our MACFNet has better classification performance than existing multimodal methods, with classification accuracies of 99.59%, 98.85%, 99.61%, and 98.23% for AD vs. CN, AD vs. MCI, CN vs. MCI and AD vs. CN vs. MCI, respectively, and specificity of 98.92%, 97.07%, 99.58% and 99.04%, and sensitivity of 99.91%, 99.89%, 99.63% and 97.75%, respectively. The proposed MACFNet is a high-accuracy multimodal AD diagnostic framework. Through the cross mechanism and efficient attention, MACFNet can make full use of the low-level features of different modal medical images and effectively pay attention to the local and global information of the images. This work provides a valuable reference for multi-mode AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LF发布了新的文献求助10
1秒前
研友_nEj9DZ发布了新的文献求助30
1秒前
xia发布了新的文献求助10
2秒前
2秒前
lixiaolu发布了新的文献求助60
2秒前
echo完成签到,获得积分10
3秒前
李爱国应助chang采纳,获得10
4秒前
小作坊钳工完成签到,获得积分10
4秒前
酷波er应助爱笑夜蕾采纳,获得10
4秒前
sugus发布了新的文献求助10
4秒前
Mic完成签到,获得积分10
4秒前
风巽雷震之歌完成签到 ,获得积分10
5秒前
zzt完成签到,获得积分10
5秒前
jyzxzr完成签到,获得积分10
6秒前
幸运星完成签到 ,获得积分10
6秒前
科研通AI5应助活力的映阳采纳,获得10
6秒前
诺诺发布了新的文献求助10
7秒前
杰克李李完成签到,获得积分10
7秒前
7秒前
科研通AI5应助薛仁贵采纳,获得10
7秒前
ymx完成签到,获得积分10
7秒前
LF完成签到,获得积分10
8秒前
guci完成签到,获得积分10
8秒前
9秒前
彬瑞发布了新的文献求助10
9秒前
9秒前
上官若男应助xiaoqi采纳,获得10
9秒前
科研通AI2S应助zuitong采纳,获得10
9秒前
10秒前
xia完成签到,获得积分10
10秒前
10秒前
zz完成签到,获得积分10
11秒前
笨笨芯发布了新的文献求助10
11秒前
zzt发布了新的文献求助10
11秒前
Akim应助危机的安青采纳,获得10
12秒前
orixero应助amwlsai采纳,获得10
12秒前
13秒前
13秒前
希望天下0贩的0应助luca采纳,获得10
14秒前
李健应助日生采纳,获得10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978