Two‐tiered deep‐learning‐based model for histologic diagnosis of Helicobacter gastritis

胃炎 医学 幽门螺杆菌 螺杆菌 人工智能 计算机科学 病理 胃肠病学
作者
Yi‐Jyun Lin,Chi‐Chung Chen,C.-S. Lee,Chao‐Yuan Yeh,Yung‐Ming Jeng
出处
期刊:Histopathology [Wiley]
卷期号:83 (5): 771-781 被引量:8
标识
DOI:10.1111/his.15018
摘要

Aims Helicobacter pylori (HP) infection is the most common cause of chronic gastritis worldwide. Due to the small size of HP and limited resolution, diagnosing HP infections is more difficult when using digital slides. Methods and Results We developed a two‐tier deep‐learning‐based model for diagnosing HP gastritis. A whole‐slide model was trained on 885 whole‐slide images (WSIs) with only slide‐level labels (positive or negative slides). An auxiliary model was trained on 824 areas with HP in nine positive WSIs and 446 negative WSIs for localizing HP. The whole‐slide model performed well, with an area under the receiver operating characteristic curve (AUC) of 0.9739 (95% confidence interval [CI], 0.9545–0.9932). The calculated sensitivity and specificity were 93.3% and 90.1%, respectively, whereas those of pathologists were 93.3% and 84.2%, respectively. Using the auxiliary model, the highlighted areas of the localization maps had an average precision of 0.5796. Conclusions HP gastritis can be diagnosed on haematoxylin‐and‐eosin‐stained WSIs with human‐level accuracy using a deep‐learning‐based model trained on slide‐level labels and an auxiliary model for localizing HP and confirming the diagnosis. This two‐tiered model can shorten the diagnostic process and reduce the need for special staining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzl完成签到,获得积分10
刚刚
刚刚
充电宝应助懒洋洋tzy采纳,获得10
刚刚
xyb完成签到,获得积分10
刚刚
深情安青应助愤怒的梦曼采纳,获得10
1秒前
1秒前
2秒前
2秒前
细剑完成签到,获得积分10
3秒前
4秒前
sunlihao完成签到,获得积分10
5秒前
wenbin发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
Akim应助张张采纳,获得10
8秒前
科目三应助aoyo采纳,获得10
8秒前
9秒前
丹青完成签到 ,获得积分10
9秒前
9秒前
hinasama发布了新的文献求助10
10秒前
juanlin2011完成签到,获得积分10
10秒前
10秒前
chenqiumu应助annaanna采纳,获得40
10秒前
英姑应助Sean采纳,获得10
11秒前
真实的语堂完成签到,获得积分10
11秒前
12秒前
的法国队完成签到,获得积分10
12秒前
热爱完成签到,获得积分10
13秒前
13秒前
莉莉丝发布了新的文献求助10
13秒前
勤恳的小馒头完成签到,获得积分10
14秒前
15秒前
16秒前
hinasama完成签到,获得积分10
16秒前
16秒前
hikari发布了新的文献求助10
17秒前
19秒前
积极向上的银杏完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206