非线性系统
控制理论(社会学)
多智能体系统
计算机科学
李雅普诺夫函数
共识
Lyapunov稳定性
人工神经网络
图论
自适应控制
网络拓扑
班级(哲学)
协议(科学)
数学
控制(管理)
人工智能
医学
物理
替代医学
病理
量子力学
组合数学
操作系统
作者
Vijay Kumar Singh,Shyam Kamal,Sandip Ghosh,Thach Ngoc Dinh
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-08-08
卷期号:71 (1): 296-300
被引量:7
标识
DOI:10.1109/tcsii.2023.3303026
摘要
This brief addresses the issue of adaptive prescribed-time consensus control for a class of unknown nonlinear multi-agent systems over an undirected connected topology. The radial basis function (RBF) neural networks (NNs) are applied to approximate the unknown nonlinearities present in the system. By utilizing graph theory and Lyapunov stability theory, we demonstrate that the proposed prescribed-time consensus protocol and adaptive law ensure the boundedness of all closed-loop signals in the system. A noteworthy advantage of the proposed method is the ability to achieve consensus within a predetermined time. Finally, a simulation example of a nonlinear Kuramoto oscillator dynamic system is provided to verify the effectiveness and superiority of the proposed scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI