材料科学
X射线反射率
沉积(地质)
离子束
极端紫外线
表面粗糙度
表面光洁度
离子
透射电子显微镜
紫外线
光学
分析化学(期刊)
光电子学
薄膜
梁(结构)
纳米技术
化学
复合材料
物理
生物
古生物学
有机化学
色谱法
激光器
沉积物
作者
Katrina Rook,P.W. Turner,Narasimhan Srinivasan,Kenji Yamamoto,Tania Henry,Meng H. Lee
出处
期刊:Journal of micro/nanopatterning, materials, and metrology
[SPIE - International Society for Optical Engineering]
日期:2021-06-17
卷期号:20 (02)
被引量:4
标识
DOI:10.1117/1.jmm.20.2.021008
摘要
The aim of our work is to investigate deposition conditions to further optimize the reflectivity of Mo/Si multilayers (MLs) for reflective coatings of extreme ultraviolet mask blanks. Dark-field transmission electron microscopy (TEM) measurements imply interfacial roughness values of 80 to 150 pm. Bright-field TEM images indicate intermixed layer thicknesses of 0.4 to 1.8 nm. We present reflectivity calculations including these two ML imperfections and compare against prior empirical results. Both interfacial roughness and intermixing are predicted to lower the maximum reflectivity. For example, interfacial roughness of 400 pm lowers the maximum reflectivity by ∼2 % . Smoother interfaces with sub-100 pm allow recovery of ∼1.5 % of the reflectivity. Mo/Si intermixing is predicted to lower the maximum reflectivity by up to 6% relative to an ideal ML. Reflectivity could be recovered by ∼3 % by reducing the intermixing depth by only 20% to 30%. We demonstrate ways to reduce roughness or intermixing by ion beam deposition (IBD). Ion bombardment simulations provide estimates of the atom energy distribution arriving at the mask blank surface during Mo and Si deposition and of stopping depths of each atom into the underlying layer. Key IBD parameters to reduce the deposition energy, and hence the intermixing depth, are summarized: beam voltage and deposition pressure. Lower ion beam voltage or higher pressure can together reduce the intermixing depth by at least 20% to 30%. Bright-field TEM measurements of MLs deposited at various deposition conditions confirm the intermixing predictions.
科研通智能强力驱动
Strongly Powered by AbleSci AI