MR to ultrasound image registration with segmentation‐based learning for HDR prostate brachytherapy

人工智能 分割 计算机科学 轮廓 图像配准 计算机视觉 前列腺近距离放射治疗 深度学习 Sørensen–骰子系数 近距离放射治疗 图像分割 医学 放射科 图像(数学) 放射治疗 计算机图形学(图像)
作者
Yizheng Chen,Lei Xing,Lequan Yu,Wu Liu,B Fahimian,Thomas Niedermayr,H.P. Bagshaw,Mark K. Buyyounouski,Bin Han
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3074-3083 被引量:21
标识
DOI:10.1002/mp.14901
摘要

Purpose Propagation of contours from high‐quality magnetic resonance (MR) images to treatment planning ultrasound (US) images with severe needle artifacts is a challenging task, which can greatly aid the organ contouring in high dose rate (HDR) prostate brachytherapy. In this study, a deep learning approach was developed to automatize this registration procedure for HDR brachytherapy practice. Methods Because of the lack of training labels and difficulty of accurate registration from inferior image quality, a new segmentation‐based registration framework was proposed for this multi‐modality image registration problem. The framework consisted of two segmentation networks and a deformable registration network, based on the weakly ‐supervised registration strategy. Specifically, two 3D V‐Nets were trained for the prostate segmentation on the MR and US images separately, to generate the weak supervision labels for the registration network training. Besides the image pair, the corresponding prostate probability maps from the segmentation were further fed to the registration network to predict the deformation matrix, and an augmentation method was designed to randomly scale the input and label probability maps during the registration network training. The overlap between the deformed and fixed prostate contours was analyzed to evaluate the registration accuracy. Three datasets were collected from our institution for the MR and US image segmentation networks, and the registration network learning, which contained 121, 104, and 63 patient cases, respectively. Results The mean Dice similarity coefficient (DSC) results of the two prostate segmentation networks are 0.86 ± 0.05 and 0.90 ± 0.03, for MR images and the US images after the needle insertion, respectively. The mean DSC, center‐of‐mass (COM) distance, Hausdorff distance (HD), and averaged symmetric surface distance (ASSD) results for the registration of manual prostate contours were 0.87 ± 0.05, 1.70 ± 0.89 mm, 7.21 ± 2.07 mm, 1.61 ± 0.64 mm, respectively. By providing the prostate probability map from the segmentation to the registration network, as well as applying the random map augmentation method, the evaluation results of the four metrics were all improved, such as an increase in DSC from 0.83 ± 0.08 to 0.86 ± 0.06 and from 0.86 ± 0.06 to 0.87 ± 0.05, respectively. Conclusions A novel segmentation‐based registration framework was proposed to automatically register prostate MR images to the treatment planning US images with metal artifacts, which not only largely saved the labor work on the data preparation, but also improved the registration accuracy. The evaluation results showed the potential of this approach in HDR prostate brachytherapy practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的夏蓉完成签到,获得积分20
刚刚
FYH完成签到,获得积分10
1秒前
思源应助rhythm采纳,获得10
2秒前
2秒前
坦率的匪举报KK求助涉嫌违规
2秒前
nowss完成签到,获得积分10
2秒前
2秒前
王jj发布了新的文献求助10
2秒前
大大苏打实打实完成签到,获得积分10
3秒前
Lina发布了新的文献求助10
3秒前
尊敬冰巧完成签到 ,获得积分10
3秒前
袁913完成签到,获得积分10
3秒前
贪玩钢铁侠完成签到,获得积分10
3秒前
浮游应助南宫雪采纳,获得10
4秒前
roy_chiang完成签到,获得积分0
4秒前
4秒前
vaa1234发布了新的文献求助10
5秒前
和谐代灵完成签到,获得积分10
6秒前
科目三应助陈末采纳,获得10
6秒前
Siriya发布了新的文献求助10
6秒前
战战发布了新的文献求助20
6秒前
日落秋水发布了新的文献求助20
6秒前
坦率的匪举报Zhouzhou求助涉嫌违规
7秒前
Xieyusen完成签到,获得积分10
7秒前
7秒前
震甫发布了新的文献求助30
7秒前
orixero应助风清扬采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
酷波er应助细心的语蓉采纳,获得10
7秒前
览明月完成签到,获得积分10
8秒前
按照习完成签到 ,获得积分10
9秒前
archaea发布了新的文献求助10
9秒前
9秒前
9秒前
传奇3应助JJJ采纳,获得10
10秒前
10秒前
冷傲的傲霜完成签到,获得积分10
10秒前
Ruby于发布了新的文献求助100
10秒前
婷婷完成签到,获得积分10
10秒前
小龙发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123096
求助须知:如何正确求助?哪些是违规求助? 4327633
关于积分的说明 13485118
捐赠科研通 4161794
什么是DOI,文献DOI怎么找? 2281027
邀请新用户注册赠送积分活动 1282556
关于科研通互助平台的介绍 1221579