Significant Enhancement of Photothermal‐Assisted Broad‐Spectrum CH4 Photosynthesis from CO2 and H2O Through Heterojunction and Cocatalyst Engineering on Metallic TiN

材料科学 广谱 宽带 光热治疗 异质结 金属 纳米技术 光电子学 化学工程 冶金 光学 组合化学 物理 工程类 化学
作者
Fengying Cao,Zhixin Fan,Yilin Cai,Yiran Zhu,Liyan Xie,Shuxian Zhong,Leihong Zhao,Song Bai
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202513733
摘要

Abstract Metallic materials are promising photocatalysts due to their high carrier concentrations, exceptional photothermal properties, and wide light absorption spectra. However, their practical applications in CO 2 methanation are hindered by severe charge recombination and unfavorable redox sites, which limit the ability to manipulate C 1 intermediate binding strengths and generate ample electrons and protons for successive hydrogenation and deoxygenation. Herein, it is demonstrated that the CO 2 ‐to‐CH 4 conversion efficiency of metallic TiN can be dramatically improved through heterojunction formation with Fe 2 O 3 substrate and coating with Ni x Cu 1−x (OH) 2 bifunctional cocatalysts. Mechanistic studies reveal that Ohmic contact between TiN and Fe 2 O 3 facilitates barrier‐free transfer of electrons and holes to their respective Ni x Cu 1−x (OH) 2 overlayers for CO 2 reduction and H 2 O oxidation. The Ni x Cu 1−x (OH) 2 wrapping raises photothermal utilization of TiN, accelerating charge separation and activation of CO 2 and H 2 O. Additionally, Ni─Cu synergy reduces energy barriers for both redox reactions and promotes successive *CO protonation over desorption. Consequently, the optimal catalyst achieves a CH 4 yield of 260.3 µmol g cat −1 h −1 , 329.5 times higher than pristine TiN, outperforming all reported metallic photocatalysts, with an apparent quantum efficiency of 2.0% at 808 nm—the highest among reported infrared‐responsive photocatalysts. This work delivers a feasible strategy to advance the efficiencies of metallic photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助晚塬采纳,获得10
1秒前
Liu66完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Daisy发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
6秒前
随风发布了新的文献求助10
7秒前
7秒前
7秒前
wy.he应助自觉一德采纳,获得10
7秒前
Liu66发布了新的文献求助10
7秒前
复杂含灵发布了新的文献求助10
8秒前
8秒前
boaster完成签到,获得积分10
8秒前
苒苒发布了新的文献求助10
8秒前
烦烦烦发布了新的文献求助10
9秒前
Ava应助78888采纳,获得10
9秒前
温水完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
13秒前
复杂含灵完成签到,获得积分10
13秒前
自觉一德完成签到,获得积分10
14秒前
14秒前
紫薇发布了新的文献求助10
16秒前
WXY完成签到 ,获得积分10
17秒前
17秒前
Rainbow完成签到,获得积分10
17秒前
RIVER发布了新的文献求助30
17秒前
大可不必发布了新的文献求助30
18秒前
19秒前
bkagyin应助随风采纳,获得10
19秒前
hp发布了新的文献求助10
19秒前
缥缈的青旋完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638275
求助须知:如何正确求助?哪些是违规求助? 4745159
关于积分的说明 15001795
捐赠科研通 4796454
什么是DOI,文献DOI怎么找? 2562586
邀请新用户注册赠送积分活动 1521971
关于科研通互助平台的介绍 1481834