Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 399-407
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Moon完成签到,获得积分10
4秒前
6秒前
BGa完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
lmt完成签到,获得积分10
8秒前
h41692011完成签到 ,获得积分10
8秒前
zz完成签到 ,获得积分10
9秒前
10秒前
coolkid应助zcy采纳,获得20
10秒前
10秒前
桃子爱学习完成签到,获得积分10
11秒前
11秒前
12秒前
uulli发布了新的文献求助10
12秒前
tutulunzi发布了新的文献求助10
13秒前
卢伟发布了新的文献求助10
13秒前
14秒前
16秒前
明天又是美好的一天完成签到 ,获得积分10
18秒前
寒冷煎饼发布了新的文献求助10
19秒前
21秒前
zcy完成签到,获得积分10
22秒前
彭彭应助自然垣采纳,获得10
22秒前
24秒前
寒冷煎饼完成签到,获得积分10
27秒前
明理新晴完成签到,获得积分10
27秒前
30秒前
30秒前
怂怂鼠完成签到,获得积分10
31秒前
暴发户完成签到,获得积分10
31秒前
hyrie给hyrie的求助进行了留言
32秒前
猪猪hero应助小星玉米浓汤采纳,获得10
34秒前
奋斗橘子发布了新的文献求助10
34秒前
34秒前
一年级完成签到,获得积分10
36秒前
曾小豪发布了新的文献求助10
37秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409