Development of a predictive inpatient falls risk model using machine learning

机器学习 病历 朴素贝叶斯分类器 人工智能 医学 回顾性队列研究 防坠落 计算机科学 人口 队列 风险评估 毒物控制 医疗急救 伤害预防 支持向量机 外科 计算机安全 内科学 环境卫生
作者
Mireia Ladios‐Martin,Maria José Cabañero‐Martínez,José Fernández‐de‐Maya,Francisco‐Javier Ballesta‐López,Adrián Belso‐Garzas,Francisco‐Manuel Zamora‐Aznar,Julio Cabrero‐García
出处
期刊:Journal of Nursing Management [Wiley]
卷期号:30 (8): 3777-3786 被引量:15
标识
DOI:10.1111/jonm.13760
摘要

The aims of this study were to create a model that detects the population at risk of falls taking into account a fall prevention variable and to know the effect on the model's performance when not considering it.Traditionally, instruments for detecting fall risk are based on risk factors, not mitigating factors. Machine learning, which allows working with a wider range of variables, could improve patient risk identification.The sample was composed of adult patients admitted to the Internal Medicine service (total, n = 22,515; training, n = 11,134; validation, n = 11,381). A retrospective cohort design was used and we applied machine learning technics. Variables were extracted from electronic medical records electronic medical records.The Two-Class Bayes Point Machine algorithm was selected. Model-A (with a fall prevention variable) obtained better results than Model-B (without it) in sensitivity (0.74 vs. 0.71), specificity (0.82 vs. 0.74), and AUC (0.82 vs. 0.78).Fall prevention was a key variable. The model that included it detected the risk of falls better than the model without it.We created a decision-making support tool that helps nurses to identify patients at risk of falling. When it is integrated in the electronic medical records, it decreases nurses' workloads by not having to collect information manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇咔咔完成签到,获得积分10
1秒前
yr完成签到,获得积分10
1秒前
充电宝应助呆萌的丹妗采纳,获得30
2秒前
星辰大海应助张琳琳采纳,获得10
3秒前
3秒前
alone完成签到 ,获得积分10
4秒前
weiweideweifeng完成签到 ,获得积分10
5秒前
星辰大海应助wyf采纳,获得10
7秒前
诡诈之裤完成签到,获得积分20
7秒前
7秒前
chuling发布了新的文献求助10
8秒前
Jasper应助元谷雪采纳,获得10
9秒前
魁梧的手套完成签到 ,获得积分10
10秒前
SYLH应助小真白采纳,获得10
10秒前
SYLH应助落寞的沛容采纳,获得10
11秒前
懒猫发布了新的文献求助20
12秒前
17秒前
chuling完成签到,获得积分10
17秒前
17秒前
李健应助曹姗采纳,获得10
18秒前
18秒前
白给完成签到,获得积分10
19秒前
莫愁完成签到,获得积分10
19秒前
小王同学完成签到,获得积分10
19秒前
20秒前
21秒前
靖秋完成签到 ,获得积分10
21秒前
水分子完成签到,获得积分10
22秒前
Invariant完成签到,获得积分20
22秒前
23秒前
Jasper应助sdnihbhew采纳,获得10
23秒前
pluto应助冰川与星辰采纳,获得20
24秒前
温暖雅阳发布了新的文献求助10
24秒前
研友_yLpzpZ发布了新的文献求助10
25秒前
Bob完成签到 ,获得积分10
25秒前
26秒前
银河打工人应助滋达不溜采纳,获得10
27秒前
孤梦落雨发布了新的文献求助10
27秒前
zho发布了新的文献求助10
28秒前
Binbin完成签到 ,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Oligopoly Pricing 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825906
求助须知:如何正确求助?哪些是违规求助? 3368185
关于积分的说明 10449655
捐赠科研通 3087638
什么是DOI,文献DOI怎么找? 1698758
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991