Segmentation and Evaluation of Crack Image From Aircraft Fuel Tank via Atrous Spatial Pyramid Fusion and Hybrid Attention Network

人工智能 棱锥(几何) 计算机科学 深度学习 分割 计算机视觉 模式识别(心理学) 联营 数学 几何学
作者
Enhui Gu,Gang Xiao,Faming Lian,Tongyao Mu,Jie Hong,Jun Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:10
标识
DOI:10.1109/tim.2023.3272052
摘要

Jet fuel leaks not only waste resources and increase costs but also pose a risk of emergency landings and aviation accidents. With the blossom and implementation of deep learning, crack segmentation techniques have been rapidly developed in many fields. However, it is struggle to get accurate and complete crack segmentation results because of images' complex background environment. To address this issue, we collected and labeled a dataset of 2824 crack images from the surface of aircraft fuel tank, named CAFT2800. And this article presents an atrous spatial pyramid fusion and hybrid attention network based on deep learning to deal with the complicated environment. The backbone of network uses a hierarchical structure Swin Transformer to extract features. In the neck of the network, an atrous spatial pyramid fusion module is proposed to further capture contextual information in multiple scale. Unlike the ASPP module, which aggregates image-level information with pooling, we abandon this operation according to the characteristics of crack. And the neck structure is designed for fusing high-level semantic information to all scales. At the gate between the neck and the decoder head, a SK (selective kernel) block is embedded into the network to recalibrates channel-wise feature responses. Due to the morphological characteristics of crack, we propose an evaluation index, Thinning F1 score (TFscore), which is more meaningful compared to the commonly used F1 score. Sufficient control experiments were conducted on the CAFT2800 dataset and two complicated environment benchmarks (DeepCrack and GAPs) to test the effectiveness of the network, and our method achieved superior performance. Source code and the CAFT2800 are available at https://github.com/Gu-EH/CAFT2800.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Six_seven完成签到,获得积分10
刚刚
lucky发布了新的文献求助10
刚刚
ha发布了新的文献求助10
1秒前
1秒前
细心的凌香完成签到,获得积分10
1秒前
2秒前
2秒前
苏七完成签到,获得积分10
2秒前
Dory发布了新的文献求助10
3秒前
3秒前
ll发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
肖航子完成签到,获得积分10
4秒前
自由的含双完成签到,获得积分10
4秒前
shu发布了新的文献求助10
4秒前
4秒前
5秒前
12完成签到 ,获得积分10
5秒前
哒哒发布了新的文献求助10
5秒前
li发布了新的文献求助10
5秒前
6秒前
6秒前
hh哈哈完成签到,获得积分10
6秒前
诚心的冷菱完成签到,获得积分10
6秒前
lucky完成签到,获得积分10
7秒前
7秒前
dan发布了新的文献求助10
7秒前
林北发布了新的文献求助10
7秒前
Dreamhappy发布了新的文献求助10
7秒前
淡然的萝完成签到,获得积分10
8秒前
8秒前
南敏株发布了新的文献求助10
8秒前
Eliauk完成签到,获得积分10
8秒前
博士僧发布了新的文献求助10
9秒前
Amanda柏完成签到,获得积分10
9秒前
虚影发布了新的文献求助10
9秒前
小番茄完成签到 ,获得积分10
10秒前
guozizi发布了新的文献求助20
10秒前
巴拉发布了新的文献求助10
10秒前
酷炫的鸭子完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544876
求助须知:如何正确求助?哪些是违规求助? 4630647
关于积分的说明 14617542
捐赠科研通 4572275
什么是DOI,文献DOI怎么找? 2506774
邀请新用户注册赠送积分活动 1483805
关于科研通互助平台的介绍 1455228