On Exploring Multiplicity of Primitives and Attributes for Texture Recognition in the Wild

计算机科学 稳健性(进化) 人工智能 关系(数据库) 空间关系 模式识别(心理学) 代表(政治) 过程(计算) 感知 数据挖掘 生物 生物化学 化学 操作系统 政治 政治学 神经科学 法学 基因
作者
Wei Zhai,Yang Cao,Jing Zhang,Haiyong Xie,Dacheng Tao,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 403-420 被引量:11
标识
DOI:10.1109/tpami.2023.3325230
摘要

Texture recognition is a challenging visual task since its multiple primitives or attributes can be perceived from the texture image under different spatial contexts. Existing approaches predominantly built upon CNN incorporate rich local descriptors with orderless aggregation to capture invariance to the spatial layout. However, these methods ignore the inherent structure relation organized by primitives and the semantic concept described by attributes, which are critical cues for texture representation. In this paper, we propose a novel Multiple Primitives and Attributes Perception network (MPAP) that extracts features by modeling the relation of bottom-up structure and top-down attribute in a multi-branch unified framework. A bottom-up process is first proposed to capture the inherent relation of various primitive structures by leveraging structure dependency and spatial order information. Then, a top-down process is introduced to model the latent relation of multiple attributes by transferring attribute-related features between adjacent branches. Moreover, an augmentation module is devised to bridge the gap between high-level attributes and low-level structure features. MPAP can learn representation through jointing bottom-up and top-down processes in a mutually reinforced manner. Experimental results on six challenging texture datasets demonstrate the superiority of MPAP over state-of-the-art methods in terms of accuracy, robustness, and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助清脆的夜白采纳,获得20
刚刚
1秒前
李爱国应助代沁采纳,获得10
1秒前
yufeng发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
共享精神应助Xhhaai采纳,获得10
2秒前
闪闪的诗珊应助张乐乐采纳,获得10
2秒前
2秒前
3秒前
852应助Kan采纳,获得10
3秒前
Xingliang_Wu98完成签到,获得积分10
3秒前
129600完成签到,获得积分10
4秒前
无花果应助angelinazh采纳,获得10
4秒前
科研通AI6.1应助支雨泽采纳,获得10
4秒前
4秒前
4秒前
杨杨完成签到,获得积分10
5秒前
5秒前
6秒前
赘婿应助追寻依风采纳,获得10
6秒前
Lucas应助Mikumo采纳,获得10
6秒前
科研通AI6.1应助ss采纳,获得10
6秒前
6秒前
shinn发布了新的文献求助10
7秒前
Will完成签到,获得积分10
7秒前
7秒前
seven发布了新的文献求助10
8秒前
9秒前
shuaiyuancheng完成签到,获得积分20
9秒前
9秒前
10秒前
Maggie完成签到,获得积分10
10秒前
xhcdz完成签到,获得积分10
11秒前
11秒前
dou完成签到 ,获得积分20
11秒前
11秒前
通关发布了新的文献求助10
11秒前
11秒前
DWDD完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933