Feature extraction of multi-sensors for early bearing fault diagnosis using deep learning based on minimum unscented kalman filter

计算机科学 卡尔曼滤波器 人工智能 深度学习 方位(导航) 模式识别(心理学) 噪音(视频) 机器学习 图像(数学)
作者
Haihong Tang,Yanmin Tang,Yuxiang Su,Wuwei Feng,Bing Wang,Peng Chen,Dunwen Zuo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107138-107138 被引量:54
标识
DOI:10.1016/j.engappai.2023.107138
摘要

Bearing fault diagnosis is vital for ensuring reliability and safety of high-speed trains and wind turbines. Therefore, a minimum unscented Kalman filter-aided deep belief network is proposed to extract invariant features from vibration signals collected by multiple sensors. This particularly crucial due to the dynamic nature of environmental noise and internal bearing degradation, which pose challenges to accurate diagnosis. Firstly, the Gramian angular summation field is employed to transform the multi-sensor signals into 2-D feature maps. This transformation retains the absolute temporal relation within the time-series signals, mitigating feature distortion and enhancing noise elimination for early detection. Secondly, a deep belief network is utilized to construct a robust deep learning framework capable of analysing the translated 2-D feature maps for effective diagnosis. In addition, a minimum unscented transform technique and an adaptive scaling process for noise are integrated into the diagnostic model. These components exhibit exceptional dynamic tracking capabilities, allowing for adjustment of key parameters in response to the prolonged and evolving bearing degradation process. The proposed methodology was rigorously evaluated through a comprehensive analysis involving nine distinct methods, utilizing two diverse bearing datasets. The results obtained underscore the superior attributes. Notably, the proposed diagnostic scheme achieved accuracy rates exceeding 98% and 99% for the two datasets, respectively. This achievement underscores the establishment of an intelligent diagnosis model characterized by high precision and exceptional generalisation capabilities for bearings within rotating machinery. Consequently, this work lays a robust foundation for future research endeavours, particularly in the realm of transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助伍寒烟采纳,获得10
4秒前
wch071完成签到,获得积分10
5秒前
汉堡包应助葫芦家二娃采纳,获得10
7秒前
7秒前
科研通AI5应助tdtk采纳,获得10
7秒前
傻自强呀完成签到,获得积分10
7秒前
骆半青发布了新的文献求助20
8秒前
领导范儿应助郑zhenglanyou采纳,获得10
8秒前
王佳骏发布了新的文献求助10
8秒前
橙汁得配曼妥思完成签到 ,获得积分10
9秒前
小二郎应助jcae123采纳,获得10
9秒前
li完成签到 ,获得积分10
9秒前
10秒前
昏睡的蟠桃应助blossoms采纳,获得200
12秒前
ziyu完成签到,获得积分10
13秒前
YZ发布了新的文献求助10
14秒前
16秒前
小唐完成签到,获得积分10
16秒前
19秒前
努力努力再努力CMY完成签到,获得积分20
19秒前
19秒前
20秒前
20秒前
日光下完成签到 ,获得积分10
21秒前
wxiao完成签到,获得积分10
21秒前
RiRi发布了新的文献求助10
22秒前
23秒前
yan完成签到,获得积分20
23秒前
一战成硕发布了新的文献求助10
24秒前
24秒前
伍寒烟发布了新的文献求助10
24秒前
lixin发布了新的文献求助10
25秒前
ash发布了新的文献求助10
25秒前
zqy1111完成签到,获得积分10
29秒前
sgt完成签到,获得积分10
30秒前
安陌煜发布了新的文献求助10
30秒前
伍寒烟完成签到,获得积分10
31秒前
taowang完成签到,获得积分10
33秒前
你好帅的哦完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779510
求助须知:如何正确求助?哪些是违规求助? 3324981
关于积分的说明 10220794
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668598
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522