Detection the maturity of multi-cultivar olive fruit in orchard environments based on Olive-EfficientDet

果园 橄榄油 橄榄树 栽培 园艺 成熟度(心理) 生物 植物 心理学 发展心理学
作者
Xueyan Zhu,Fengjun Chen,Xinwei Zhang,Yili Zheng,Xiaodan Peng,Chuang Chen
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:324: 112607-112607 被引量:28
标识
DOI:10.1016/j.scienta.2023.112607
摘要

Olive (Olea europaea L.) fruit maturity detection in orchard environments plays a vital role in ensuring the quantity and quality of olive oil. However, it is difficult for olive fruit maturity detection in orchard environments due to the minimal phenotypic difference between neighboring maturity, and the occlusion and overlap of olive fruits. Most existing research pays more attention to olive fruit detection while ignoring olive fruit maturity detection problems. Therefore, a novel Olive-EfficientDet is proposed to detect the maturity of multi-cultivar olive fruits in orchard environments. In Olive-EfficientDet, the convolutional block attention module (CBAM) is rationally embedded into the backbone network for distinguishing different maturity-stage olive fruits with higher accuracy. The improved weighted bi-directional feature pyramid network (Bi-FPN) structure head network is constructed to focus on occlusion and overlap olive fruits, which can fully fuse semantic relationships and location information of different layers. The experimental results showed that the proposed Olive-EfficientDet provides an effective method for olive fruit maturity detection in orchard environments. The mean average precision (mAP) of fruit maturity detection reached 94.60%, 95.45%, 93.75%, and 96.05% for olives of cultivar ‘Frantoio’, ‘Ezhi 8′, ‘Leccino’, and ‘Picholine’; the mean detection time was 337 ms per image; and the model size was only 32.4 MB. In addition, the Olive-EfficientDet exhibits robust adaptability to complex illumination, occlusion, and overlap in uncontrolled and challenging orchard environments. Comparative experiments were conducted using Olive-EfficientDet and other state-of-the-art fruit maturity detection methods. The comparative experiment results showed that the mAP of the olive fruit maturity detection with four cultivars using Olive-EfficientDet was higher than that of SSD, EfficientDet, YOLOv3, and Faster RCNN. Especially, Olive-EfficientDet obtained the highest mAP for olive fruit maturity detection in orchard environments while maintaining an encouraging model size and speed, which can provide a technical foundation for fruit maturity detection in olive harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毅虹完成签到,获得积分10
1秒前
1秒前
2秒前
成长中发布了新的文献求助10
4秒前
5秒前
务实映之完成签到,获得积分10
5秒前
Daisy完成签到,获得积分10
6秒前
zicong完成签到,获得积分10
7秒前
asdfqwer发布了新的文献求助10
7秒前
大曼曼曼曼完成签到,获得积分10
9秒前
棋子一小枚完成签到,获得积分20
9秒前
jia完成签到,获得积分10
12秒前
Ava应助cherry采纳,获得10
13秒前
爆米花应助小栗采纳,获得10
13秒前
包容的小蚂蚁完成签到,获得积分10
14秒前
Criminology34应助tara采纳,获得10
14秒前
wzf完成签到 ,获得积分10
17秒前
李健应助努力的小韩采纳,获得10
22秒前
Sunshine应助根根采纳,获得20
23秒前
27秒前
延娜完成签到,获得积分10
29秒前
咖喱鸡完成签到,获得积分10
31秒前
TYM发布了新的文献求助10
31秒前
舒服的八宝粥完成签到 ,获得积分10
32秒前
好晒发布了新的文献求助10
32秒前
jia关注了科研通微信公众号
32秒前
感谢有你完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
34秒前
碧蓝笑槐完成签到,获得积分10
35秒前
35秒前
在水一方应助科研通管家采纳,获得10
35秒前
杨华启应助科研通管家采纳,获得10
35秒前
星辰大海应助科研通管家采纳,获得20
35秒前
Hello应助科研通管家采纳,获得10
35秒前
Lucas应助舒适的尔容采纳,获得10
36秒前
陈阳发布了新的文献求助20
42秒前
Findasheep完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831