Generative Adversarial and Self-Supervised Dehazing Network

计算机科学 人工智能 薄雾 相关性(法律) 计算机视觉 领域(数学分析) 机器学习 数学分析 物理 数学 气象学 政治学 法学
作者
Shengdong Zhang,Xiaoqin Zhang,Shaohua Wan,Wenqi Ren,Liping Zhao,Linlin Shen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4187-4197 被引量:32
标识
DOI:10.1109/tii.2023.3316180
摘要

Owing to the fast developments of economics, a lot of devices and objects have been connected and have formed the Internet of Things (IoT). Visual sensors have been applied in vehicle navigation, traffic situational awareness, and traffic safety management. However, the particles in the air degrade the imaging quality, which affects the performance of vehicle navigation, traffic situational awareness, and traffic safety management. Deep-learning-based dehazing methods were proposed to address this issue. However, these methods are trained with simulated hazy images and cannot generalize to natural haze images well. To address the domain shift problem, some methods resort to zero-shot learning or domain adaption to boost the generalization of the model on natural haze images. However, the relevance between dehazed results and clean images is ignored by zero-shot dehazing methods. Domain-adaption-based dehazing methods ignore the relationship between the dehazed results and the hazy images. To overcome these issues, a generative adversarial and self-supervised dehazing network is introduced to boost the dehazing performance on real haze images. First, generative adversarial is employed to construct the relevance between dehazed results and haze-free images, which can boost the natural appearance of dehazed results. Second, self-supervised learning is employed to construct the relevance between the dehazed results and hazy images, which can restrict the solution space of dehazing. To show the effectiveness of the proposed model, we conduct extensive experiments on real and simulated haze images. Compared with state-of-the-art methods, the proposed model achieves state-of-the-art dehazing performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chengxc发布了新的文献求助10
刚刚
2秒前
宇宙超级无敌涛完成签到,获得积分10
2秒前
活泼一凤发布了新的文献求助10
2秒前
红岸完成签到,获得积分10
2秒前
简单的呆呆完成签到,获得积分10
2秒前
SUNJJ发布了新的文献求助10
2秒前
随机发布了新的文献求助10
3秒前
abbb发布了新的文献求助10
3秒前
果蝇之母完成签到 ,获得积分10
3秒前
羽翼发布了新的文献求助10
3秒前
weixiaozdw发布了新的文献求助10
3秒前
小肥猪发布了新的文献求助10
3秒前
3秒前
乐乐应助黄雪峰采纳,获得10
4秒前
4秒前
郭素玲发布了新的文献求助10
4秒前
4秒前
赘婿应助快乐的浩轩采纳,获得10
4秒前
顺利的银耳汤完成签到,获得积分10
6秒前
6秒前
小王完成签到,获得积分10
6秒前
思源应助活力鸡采纳,获得10
6秒前
烟花应助活力鸡采纳,获得10
7秒前
7秒前
wanci应助小鑫采纳,获得10
7秒前
温赢完成签到 ,获得积分20
7秒前
houxiyang发布了新的文献求助50
8秒前
甘雨露完成签到,获得积分10
8秒前
8秒前
孙洪琼发布了新的文献求助10
8秒前
望却完成签到,获得积分10
8秒前
酷炫贞发布了新的文献求助10
9秒前
wen发布了新的文献求助10
9秒前
柔弱怜梦完成签到,获得积分10
9秒前
Annlucy发布了新的文献求助10
9秒前
9秒前
9秒前
l林钟发布了新的文献求助10
9秒前
华仔完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066