Learning Unified Hyper-Network for Multi-Modal MR Image Synthesis and Tumor Segmentation With Missing Modalities

计算机科学 模态(人机交互) 人工智能 分割 特征(语言学) 模式 模式识别(心理学) 基本事实 图像分割 特征向量 计算机视觉 社会科学 语言学 哲学 社会学
作者
Heran Yang,Jian Sun,Zongben Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3678-3689 被引量:11
标识
DOI:10.1109/tmi.2023.3301934
摘要

Accurate segmentation of brain tumors is of critical importance in clinical assessment and treatment planning, which requires multiple MR modalities providing complementary information. However, due to practical limits, one or more modalities may be missing in real scenarios. To tackle this problem, existing methods need to train multiple networks or a unified but fixed network for various possible missing modality cases, which leads to high computational burdens or sub-optimal performance. In this paper, we propose a unified and adaptive multi-modal MR image synthesis method, and further apply it to tumor segmentation with missing modalities. Based on the decomposition of multi-modal MR images into common and modality-specific features, we design a shared hyper-encoder for embedding each available modality into the feature space, a graph-attention-based fusion block to aggregate the features of available modalities to the fused features, and a shared hyper-decoder for image reconstruction. We also propose an adversarial common feature constraint to enforce the fused features to be in a common space. As for missing modality segmentation, we first conduct the feature-level and image-level completion using our synthesis method and then segment the tumors based on the completed MR images together with the extracted common features. Moreover, we design a hypernet-based modulation module to adaptively utilize the real and synthetic modalities. Experimental results suggest that our method can not only synthesize reasonable multi-modal MR images, but also achieve state-of-the-art performance on brain tumor segmentation with missing modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ExcuseMEEE完成签到 ,获得积分10
刚刚
gzslwddhjx完成签到,获得积分10
1秒前
2秒前
迷人的帅哥完成签到,获得积分10
2秒前
2秒前
2秒前
xiaoningmeng发布了新的文献求助10
3秒前
Snowychen完成签到,获得积分10
3秒前
快哉快哉发布了新的文献求助10
5秒前
黄秋秋完成签到,获得积分10
6秒前
领导范儿应助Lily采纳,获得10
6秒前
9秒前
夏天很凉快完成签到,获得积分10
10秒前
sys完成签到,获得积分10
10秒前
妖妖灵完成签到,获得积分10
10秒前
烟花应助疯狂的沛岚采纳,获得10
10秒前
石土土关注了科研通微信公众号
10秒前
111完成签到 ,获得积分10
10秒前
aefs发布了新的文献求助20
13秒前
顾矜应助任性的麦片采纳,获得10
13秒前
tanshy完成签到,获得积分10
15秒前
yyf完成签到 ,获得积分10
16秒前
FFFFcom完成签到,获得积分10
16秒前
田様应助Molecular采纳,获得10
16秒前
雨淋沐风发布了新的文献求助10
17秒前
老实的英姑完成签到 ,获得积分10
17秒前
18秒前
19秒前
是安山完成签到,获得积分10
21秒前
简墨完成签到,获得积分10
21秒前
土豆土豆完成签到,获得积分20
22秒前
徐彬荣发布了新的文献求助10
22秒前
aefs完成签到,获得积分20
22秒前
23秒前
NICAI应助朱子杰采纳,获得10
23秒前
你好晚安发布了新的文献求助10
23秒前
23秒前
24秒前
快哉快哉完成签到,获得积分10
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812792
求助须知:如何正确求助?哪些是违规求助? 3357308
关于积分的说明 10385888
捐赠科研通 3074504
什么是DOI,文献DOI怎么找? 1688855
邀请新用户注册赠送积分活动 812373
科研通“疑难数据库(出版商)”最低求助积分说明 767066