Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Gao,Fan Lin,Ziyin Li,Qi Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:4
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr_Zhu完成签到,获得积分10
1秒前
Hello应助fan采纳,获得10
2秒前
美好南晴完成签到,获得积分10
4秒前
667完成签到,获得积分10
4秒前
田磊完成签到,获得积分10
4秒前
7秒前
赘婿应助祝垚采纳,获得10
8秒前
含蓄朝雪发布了新的文献求助10
8秒前
ShengQ完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
浮游应助ChunyiKuang采纳,获得10
10秒前
11秒前
12秒前
13秒前
JamesPei应助田国兵采纳,获得10
13秒前
丘比特应助hesujie采纳,获得10
13秒前
ZPQ完成签到 ,获得积分10
14秒前
子铭完成签到,获得积分20
14秒前
GexYuu发布了新的文献求助10
14秒前
舒服的山蝶完成签到 ,获得积分10
14秒前
专一的忆寒完成签到,获得积分10
14秒前
liu完成签到,获得积分10
15秒前
ruby完成签到,获得积分10
16秒前
典雅胜发布了新的文献求助10
16秒前
lllllkkkj完成签到,获得积分10
17秒前
倪鱼发布了新的文献求助10
18秒前
坚强的纸飞机完成签到,获得积分10
19秒前
99发布了新的文献求助10
20秒前
21秒前
祝垚完成签到,获得积分10
21秒前
22秒前
22秒前
Eileen发布了新的文献求助20
22秒前
顾矜应助KerwinLLL采纳,获得10
22秒前
24秒前
微笑芯完成签到,获得积分20
24秒前
牛马完成签到,获得积分10
24秒前
祝垚发布了新的文献求助10
25秒前
烛夜黎发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120742
求助须知:如何正确求助?哪些是违规求助? 4326041
关于积分的说明 13478459
捐赠科研通 4159774
什么是DOI,文献DOI怎么找? 2279698
邀请新用户注册赠送积分活动 1281431
关于科研通互助平台的介绍 1220304