Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Gao,Fan Lin,Ziyin Li,Qi Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:61 (5): 2212-2220 被引量:5
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的BILL完成签到,获得积分10
1秒前
活泼的碧灵完成签到 ,获得积分10
1秒前
1秒前
vv发布了新的文献求助10
1秒前
草莓钙片完成签到,获得积分10
4秒前
李爱国应助夜信采纳,获得10
4秒前
汉堡包应助夜信采纳,获得10
4秒前
所所应助poki采纳,获得10
4秒前
秋颦完成签到,获得积分10
4秒前
ABCDEFG完成签到,获得积分10
5秒前
狂野裘完成签到,获得积分10
6秒前
大模型应助文静的寒珊采纳,获得20
6秒前
7秒前
8秒前
8秒前
8秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
江河湖库考试辅导完成签到,获得积分10
11秒前
风吹麦田应助大钱采纳,获得30
12秒前
光轮2000发布了新的文献求助10
13秒前
汉堡包应助灰灰采纳,获得10
14秒前
小白发布了新的文献求助10
14秒前
waldoe完成签到,获得积分10
14秒前
15秒前
aderwe完成签到,获得积分10
15秒前
bird完成签到,获得积分10
15秒前
ColdPomelo发布了新的文献求助10
15秒前
水果咔咔咔完成签到,获得积分10
16秒前
VicTarZ完成签到,获得积分10
17秒前
17秒前
yh完成签到,获得积分10
17秒前
TAZIA完成签到,获得积分10
17秒前
vv完成签到,获得积分20
17秒前
橘色天际线完成签到,获得积分10
18秒前
18秒前
Red发布了新的文献求助10
20秒前
思源应助lil采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545351
求助须知:如何正确求助?哪些是违规求助? 4631357
关于积分的说明 14620547
捐赠科研通 4573019
什么是DOI,文献DOI怎么找? 2507284
邀请新用户注册赠送积分活动 1484116
关于科研通互助平台的介绍 1455352