Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI

人工智能 分割 接收机工作特性 深度学习 乳房磁振造影 乳腺癌 计算机科学 动态增强MRI 医学 模式识别(心理学) 磁共振成像 癌症 算法 机器学习 放射科 乳腺摄影术 内科学
作者
Yi Dai,Chun Lian,Zhuo Zhang,Jing Gao,Fan Lin,Ziyin Li,Qi Wang,Tongpeng Chu,Dilinuer Aishanjiang,Meiying Chen,Ximing Wang,Guanxun Cheng,Rong Huang,Jianjun Dong,Haicheng Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29670
摘要

Background Previous studies explored MRI‐based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)‐zero, HER2‐low, and HER2‐positive breast cancer, but deep learning's effectiveness is uncertain. Purpose This study aims to develop and validate a deep learning system using dynamic contrast‐enhanced MRI (DCE‐MRI) for automated tumor segmentation and classification of HER2‐zero, HER2‐low, and HER2‐positive statuses. Study Type Retrospective. Population One thousand two hundred ninety‐four breast cancer patients from three centers who underwent DCE‐MRI before surgery were included in the study (52 ± 11 years, 811/204/279 for training/internal testing/external testing). Field Strength/Sequence 3 T scanners, using T1‐weighted 3D fast spoiled gradient‐echo sequence, T1‐weighted 3D enhanced fast gradient‐echo sequence and T1‐weighted turbo field echo sequence. Assessment An automated model segmented tumors utilizing DCE‐MRI data, followed by a deep learning models (ResNetGN) trained to classify HER2 statuses. Three models were developed to distinguish HER2‐zero, HER2‐low, and HER2‐positive from their respective non‐HER2 categories. Statistical Tests Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of the model. Evaluation of the model performances for HER2 statuses involved receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC), accuracy, sensitivity, and specificity. The P ‐values <0.05 were considered statistically significant. Results The automatic segmentation network achieved DSC values of 0.85 to 0.90 compared to the manual segmentation across different sets. The deep learning models using ResNetGN achieved AUCs of 0.782, 0.776, and 0.768 in differentiating HER2‐zero from others in the training, internal test, and external test sets, respectively. Similarly, AUCs of 0.820, 0.813, and 0.787 were achieved for HER2‐low vs. others, and 0.792, 0.745, and 0.781 for HER2‐positive vs. others, respectively. Data Conclusion The proposed DCE‐MRI‐based deep learning system may have the potential to preoperatively distinct HER2 expressions of breast cancers with therapeutic implications. Evidence Level 4 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zsd发布了新的文献求助10
3秒前
科研通AI5应助Scout采纳,获得10
4秒前
IceyCNZ完成签到,获得积分10
6秒前
赘婿应助身处人海采纳,获得10
6秒前
青果发布了新的文献求助10
7秒前
科研通AI2S应助aquar1us采纳,获得10
7秒前
鸭梨完成签到 ,获得积分10
8秒前
丽莉完成签到,获得积分20
9秒前
wanci应助mo采纳,获得20
9秒前
感动的安阳完成签到 ,获得积分10
14秒前
14秒前
李诺关注了科研通微信公众号
16秒前
橘子s完成签到,获得积分10
16秒前
大根猫完成签到,获得积分10
16秒前
19秒前
BaekHyun完成签到 ,获得积分10
20秒前
20秒前
魚子应助Wlin采纳,获得20
20秒前
陈伟杰发布了新的文献求助10
21秒前
嗯嗯嗯完成签到,获得积分10
21秒前
ada完成签到,获得积分10
21秒前
自由的羊关注了科研通微信公众号
22秒前
22秒前
24秒前
身处人海发布了新的文献求助10
24秒前
李诺发布了新的文献求助10
27秒前
28秒前
小二郎应助理想的路痴采纳,获得10
28秒前
29秒前
32秒前
AZN完成签到,获得积分10
33秒前
十月完成签到,获得积分10
33秒前
35秒前
35秒前
Alex发布了新的文献求助20
35秒前
38秒前
科研力力发布了新的文献求助10
39秒前
稳重书双发布了新的文献求助10
40秒前
enmnm完成签到,获得积分10
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846291
求助须知:如何正确求助?哪些是违规求助? 3388623
关于积分的说明 10553673
捐赠科研通 3109140
什么是DOI,文献DOI怎么找? 1713351
邀请新用户注册赠送积分活动 824740
科研通“疑难数据库(出版商)”最低求助积分说明 775004