Memristor-like Electrical Resistivity Behavior of SiO2 Nanofilms and Their Applicability in Wireless Internet of Things Communications

记忆电阻器 材料科学 神经形态工程学 纳米技术 光电子学 电阻随机存取存储器 纳米材料 电压 电子工程 电气工程 计算机科学 机器学习 人工神经网络 工程类
作者
Takeru Suzuki,Katsuyoshi Ando,Takahisa Ichinohe,Seiichi Sato
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (67): 4650-4650
标识
DOI:10.1149/ma2024-02674650mtgabs
摘要

Memristors, capable of altering their resistance based on past voltage inputs, have emerged as promising components for various applications, including resistive memory, neuromorphic devices, and chaotic circuits. Over the years, a variety of nanomaterials and nanodevices, such as nanocrystal arrays [1], metal-doped dielectrics [2,3], and ferroelectric switching devices [4], have been reported to exhibit memristive properties. In this study, we demonstrated memristor-like behavior in metal-contacted SiO 2 nanofilms. Unlike conventional methods used for inducing memristive behavior in oxide films, such as adjusting the density distribution of mobile ions or creating/disrupting conductive filaments within the oxide, we leveraged the unique electrical conductivity of the nanofilms to achieve memristor-like current–voltage (I–V) characteristics. This conductivity likely results from the many-body effects arising from the electron-electron and/or electron-hole interactions between metals and SiO 2 nanofilms [5]. A notable deviation from conventional memristors was observed when the resistance shifted from low to high resistance states as the voltage returned to 0 V. Despite this behavior, the SiO 2 nanofilms exhibited a pinched hysteresis loop in their I–V characteristics, and were thus suitable for application in chaotic circuits. The use of SiO 2 nanofilms offers advantages such as facile integration into Si microfabrication processes and realization of memristor-like properties through the intrinsic characteristics of SiO 2 , eliminating the need for precise doping processes. Herein, we investigated the alternating current characteristics of SiO 2 nanofilms in contact with Au films and Ag-pastes. The SiO 2 nanofilms were thermally grown on low-resistance Si substrates, followed by the deposition of metal electrodes. The deposited metals served not only as electrodes for injecting carriers into the nanofilms but also as inducers of many-body effects. SiO 2 nanofilms with thicknesses of ~1 nm, which facilitated easy carrier tunneling, exhibited resistance-specific behaviors in their I–V characteristics. Conversely, films with thicknesses exceeding 50 nm, which prevented carrier injection into SiO 2 , showed capacitance-specific properties. Memristor-like behavior was achieved by adjusting the SiO 2 film thicknesses to their intermediate values. For example, a 9-nm-thick SiO 2 nanofilm demonstrated a resistance change from over 1 kΩ·cm during voltage increase to below 10 Ω·cm during voltage decrease. This phenomenon is attributed to the SiO 2 nanofilms acting as wide-bandgap semiconductors upon metal contact, as well as in the presence of Schottky barriers and/or Fowler–Nordheim tunneling at the metal/SiO 2 interfaces. Based on our experimental results, we propose utilization of SiO 2 nanofilms in chaotic circuits for secure internet of things (IoT) device communication. Simulations were conducted using LTspice and MATLAB Simulink to encrypt digital signals by modulating chaotic voltage oscillation rates with the digital signals. The modulated voltage wave patterns were transmitted with white noise added to mimic real-world scenarios. At the receiving end, decryption was achieved using a similar SiO 2 nanofilm-integrated chaotic circuit, representing a form of hardware based symmetric key encryption. Simulations showed that the image data encryption/decryption performance degraded only slightly with increasing noise levels, even at signal-to-noise ratios of approximately 10 dB. Thus, the proposed device exhibits secure communication capabilities comparable to those of conventional memristor–incorporated circuits [6]. References [1] F. Wang, M. Yu, X. Chen, J. Li, Z. Zhang, Y. Li, G. Zhang, K. Shi, L. Shi, M. Zhang, T. Lu, J. Zhang, Smart Mater . 4 , e1135 [13 pages] (2023). [2] W. Tong, W. Wei, X. Zhang, S. Ding, Z. Lu, L. Liu, W. Li, C. Pan, L. Kong, Y. Wang, M. Zhu, S. Liang, F. Miao, Y. Liu, Nano Lett. 23 , 9928–9935 (2023). [3] X. Yan, Y. Shao, Z. Fang, X. Han, Z. Zhang, J. Niu, J. Sun, Y. Zhang, L. Wang, X. Jia, Z. Zhao, Z. Guo, Appl. Phys. Lett. 122 , 042101 [7 pages] (2023). [4] J. Qin, B. Sun, G. Zhou, T. Guo, Y. Chen, C. Ke, S. Mao, X. Chen, J. Shao, Y. Zhao, ACS Mater. Lett. 5 , 2197–2215 (2023). [5] Y. Murata, Chem. Record 15 , 557–594 (2015). [6] R. Vishwakarma, R. Monani, A. Hedayatipour, A. Rezaei, Dis. Inter. Things 3 , 2 [17 pages] (2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪蛤发布了新的文献求助10
刚刚
多情的青烟完成签到,获得积分20
刚刚
han发布了新的文献求助10
1秒前
易银辉发布了新的文献求助10
1秒前
打打应助独特四娘采纳,获得10
2秒前
2秒前
2秒前
2秒前
103921wjk完成签到,获得积分10
2秒前
2秒前
YXJ完成签到,获得积分10
3秒前
科研通AI5应助loor采纳,获得10
3秒前
Owen应助jin采纳,获得10
4秒前
狂野砖头完成签到 ,获得积分10
5秒前
自信晟睿完成签到,获得积分10
5秒前
ardejiang发布了新的文献求助10
6秒前
huawei发布了新的文献求助10
6秒前
7秒前
罗尔与柯西完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
後zgw完成签到,获得积分10
10秒前
星辰发布了新的文献求助10
11秒前
香蕉觅云应助香蕉八宝粥采纳,获得10
11秒前
11秒前
yy发布了新的文献求助10
12秒前
完美世界应助nanana采纳,获得10
12秒前
GnodNy完成签到,获得积分10
12秒前
李梦琦发布了新的文献求助10
12秒前
HEAUBOOK应助zzzlk采纳,获得10
12秒前
nhzz2023完成签到 ,获得积分10
12秒前
文献求助应助怡心亭采纳,获得20
12秒前
unique完成签到 ,获得积分10
13秒前
kaifeiQi完成签到,获得积分10
13秒前
昕wei完成签到 ,获得积分10
14秒前
坚强三德发布了新的文献求助10
14秒前
雪蛤完成签到,获得积分10
15秒前
行运完成签到 ,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785471
求助须知:如何正确求助?哪些是违规求助? 3331017
关于积分的说明 10249675
捐赠科研通 3046460
什么是DOI,文献DOI怎么找? 1672051
邀请新用户注册赠送积分活动 800962
科研通“疑难数据库(出版商)”最低求助积分说明 759907