Accuracy of a Cascade Network for Semi‐Supervised Maxillary Sinus Detection and Sinus Cyst Classification

上颌窦 医学 人工智能 计算机科学 放射科 牙科
作者
Xueqi Guo,Zelun Huang,Jieying Huang,Jialing Wei,Yongshan Li,Haoran Zheng,Shiyong Zhao
出处
期刊:Clinical Implant Dentistry and Related Research [Wiley]
卷期号:27 (1) 被引量:2
标识
DOI:10.1111/cid.13431
摘要

ABSTRACT Objective Maxillary sinus mucosal cysts represent prevalent oral and maxillofacial diseases, and their precise diagnosis is essential for surgical planning in maxillary sinus floor elevation. This study aimed to develop a deep learning‐based pipeline for the classification of maxillary sinus lesions in cone beam computed tomography (CBCT) images to provide auxiliary support for clinical diagnosis. Methods This study utilized 45 136 maxillary sinus images from CBCT scans of 541 patients. A cascade network was designed, comprising a semi‐supervised maxillary sinus area object detection module and a maxillary sinus lesions classification module. The object detection module employed a semi‐supervised pseudo‐labelling training strategy to expand the maxillary sinus annotation dataset. In the classification module, the performance of Convolutional Neural Network and Transformer architectures was compared for maxillary sinus mucosal lesion classification. The object detection and classification modules were evaluated using metrics including Accuracy, Precision, Recall, F1 score, and Average Precision, with the object detection module additionally assessed using Precision‐Recall Curve. Results The fully supervised pseudo‐label generation model achieved an average accuracy of 0.9433, while the semi‐supervised maxillary sinus detection model attained 0.9403. ResNet‐50 outperformed in classification, with accuracies of 0.9836 (sagittal) and 0.9797 (coronal). Grad‐CAM visualization confirmed accurate focus on clinically relevant lesion features. Conclusion The proposed pipeline achieves high‐precision detection and classification of maxillary sinus mucosal lesions, reducing manual annotation while maintaining accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Du发布了新的文献求助10
刚刚
刚刚
Kate完成签到,获得积分10
1秒前
1秒前
2秒前
Skeletal发布了新的文献求助10
3秒前
3秒前
XXX关注了科研通微信公众号
3秒前
共享精神应助自己采纳,获得10
4秒前
4秒前
zhairx完成签到,获得积分10
4秒前
英俊的铭应助漂亮水绿采纳,获得10
5秒前
5秒前
光华发布了新的文献求助10
5秒前
张小医完成签到,获得积分10
7秒前
7秒前
Robin发布了新的文献求助30
8秒前
苯氮小羊完成签到,获得积分10
8秒前
刘松发布了新的文献求助10
10秒前
Fortune应助dkm采纳,获得80
11秒前
14秒前
17秒前
冷艳的盼芙应助HY采纳,获得80
17秒前
17秒前
迷糊蛋完成签到,获得积分20
18秒前
18秒前
19秒前
20秒前
我在家里睡觉就不会被打扰了完成签到,获得积分20
20秒前
23秒前
Stone发布了新的文献求助10
23秒前
23秒前
领导范儿应助霸气的金鱼采纳,获得10
24秒前
25秒前
tqqwerty发布了新的文献求助10
25秒前
赘婿应助听枫采纳,获得10
25秒前
25秒前
W1发布了新的文献求助10
26秒前
小二郎应助年少采纳,获得10
26秒前
gazel完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739