Multiview Spatio-Temporal Learning With Dual Dynamic Graph Convolutional Networks for Rumor Detection

谣言 计算机科学 图形 对偶(语法数字) 人工智能 卷积神经网络 图论 机器学习 理论计算机科学 数学 艺术 公共关系 文学类 组合数学 政治学
作者
Xuejian Huang,Tinghuai Ma,Wei Liang Jin,Huan Rong,Li Jia,Bin Yang,Xintong Xie
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcss.2024.3520105
摘要

Detecting rumors on social networks is increasingly important due to their rapid dissemination and negative societal impact. The structural characteristics of propagation play a crucial role in rumor detection. However, most current graph neural network-based methods focus on spatial structural features, overlooking the temporal structural features or exploring spatio-temporal features from a single perspective, failing to comprehensively and finely learn representations of dynamic events. Therefore, this article proposes a multiview spatio-temporal feature learning method based on dual dynamic graph convolutional networks. First, dynamic graphs of information propagation and user interactions are constructed based on retweet and reply relationships. Second, BERT is utilized to extract semantic features of content, serving as initial node representations for the information propagation graph, while social features of users serve as initial node representations for the user interaction graph. Subsequently, dual graph convolutional networks are employed to learn representations of graph structures at different time steps. Finally, a time fusion unit based on cross-attention is devised to facilitate the learning and fusion of the spatio-temporal features from the two dynamic graphs. Experimental results on two real-world social network rumor datasets, PHEME and Weibo, demonstrate that our method outperforms all compared baseline methods and enables early detection of rumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
海茵发布了新的文献求助10
1秒前
爱听歌的青文完成签到,获得积分20
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
踏雪无痕应助科研通管家采纳,获得20
3秒前
卡卡西应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
鱼儿游发布了新的文献求助10
4秒前
糊涂的保温杯完成签到,获得积分10
5秒前
长情立诚完成签到,获得积分10
5秒前
better发布了新的文献求助10
5秒前
zyw0532完成签到,获得积分10
6秒前
高高应助糊涂的MJ采纳,获得10
7秒前
7秒前
无相变发布了新的文献求助10
8秒前
共享精神应助sje采纳,获得10
11秒前
12秒前
达达尼尔完成签到,获得积分10
13秒前
14秒前
王高原发布了新的文献求助10
15秒前
昏睡的蟠桃应助冷静立果采纳,获得30
15秒前
Pendragon发布了新的文献求助10
16秒前
丰富的乐儿完成签到,获得积分10
17秒前
今后应助铁锅炖大鹅采纳,获得10
18秒前
水牛发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944596
求助须知:如何正确求助?哪些是违规求助? 3489485
关于积分的说明 11052399
捐赠科研通 3220477
什么是DOI,文献DOI怎么找? 1780121
邀请新用户注册赠送积分活动 865088
科研通“疑难数据库(出版商)”最低求助积分说明 799836