The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform

基诺美 仿形(计算机编程) 计算机科学 深度学习 人工智能 选择性 化学 计算生物学 基因 生物 生物化学 程序设计语言 催化作用
作者
Wei Ma,Jia Hu,Zhuangzhi Chen,Yaoqin Ai,Yihang Zhang,Keke Dong,Xiangfei Meng,Liu Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (19): 7273-7290 被引量:3
标识
DOI:10.1021/acs.jcim.4c00595
摘要

Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmacology effects and provides unique pharmacological insights for drug repurposing development of existing kinase inhibitor drugs. However, experimental profiling of whole kinome selectivity is still time-consuming and resource-demanding. Here, we report a deep learning classification model using an in-house built data set of inhibitors against 191 well-representative kinases constructed based on a novel strategy by systematically cleaning and integrating six public data sets. This model, a multitask deep neural network, predicts the kinome selectivity profiles of compounds with novel structures. The model demonstrates excellent predictive performance, with auROC, prc-AUC, Accuracy, and Binary_cross_entropy of 0.95, 0.92, 0.90, and 0.37, respectively. It also performs well in a priori testing for inhibitors targeting different categories of proteins from internal compound collections, significantly improving over similar models on data sets from practical application scenarios. Integrated to subsequent machine learning-enhanced virtual screening workflow, novel CDK2 kinase inhibitors with potent kinase inhibitory activity and excellent kinome selectivity profiles are successfully identified. Additionally, we developed a free online web server, KinomePro-DL, to predict the kinome selectivity profiles and kinome-wide polypharmacology effects of small molecules (available on kinomepro-dl.pharmablock.com). Uniquely, our model allows users to quickly fine-tune it with their own training data sets, enhancing both prediction accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yu1212zhang完成签到,获得积分10
刚刚
刚刚
song发布了新的文献求助10
1秒前
可靠的东蒽关注了科研通微信公众号
2秒前
2秒前
敬老院N号应助北开水采纳,获得30
2秒前
科研通AI6应助南街楼采纳,获得10
3秒前
3秒前
自然的南露完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
雷乾发布了新的文献求助10
4秒前
zuhayr发布了新的文献求助10
5秒前
志不在科研完成签到,获得积分0
5秒前
M_vil发布了新的文献求助10
5秒前
5秒前
6秒前
钱儿发布了新的文献求助10
6秒前
6秒前
韩一发布了新的文献求助10
6秒前
6秒前
6秒前
坚定寒松完成签到 ,获得积分10
6秒前
元谷雪发布了新的文献求助10
7秒前
WD发布了新的文献求助10
7秒前
Dsivan发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
alc发布了新的文献求助10
8秒前
FashionBoy应助大婷子采纳,获得10
9秒前
9秒前
666完成签到,获得积分20
9秒前
9秒前
9秒前
希望天下0贩的0应助XING采纳,获得10
9秒前
10秒前
隐形饼干发布了新的文献求助10
10秒前
bj完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597707
求助须知:如何正确求助?哪些是违规求助? 4683245
关于积分的说明 14828935
捐赠科研通 4661452
什么是DOI,文献DOI怎么找? 2536795
邀请新用户注册赠送积分活动 1504402
关于科研通互助平台的介绍 1470232