A fine-grained and multi-context-aware learning path recommendation model over knowledge graphs for online learning communities

计算机科学 背景(考古学) 图形 人工智能 机器学习 情报检索 万维网 理论计算机科学 古生物学 生物
作者
Si Zhang,Ning Hui,Peiyun Zhai,Jiali Xu,Lanying Cao,Qiyun Wang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (5): 103464-103464 被引量:10
标识
DOI:10.1016/j.ipm.2023.103464
摘要

Existing approaches to learning path recommendation for online learning communities mainly rely on the individual characteristics of users or the historical records of their learning processes, but pay less attention to the semantics of users' postings and the context. To facilitate the knowledge understanding and personalized learning of users in online learning communities, it is necessary to conduct a fine-grained analysis of user data to capture their dynamical learning characteristics and potential knowledge levels, so as to recommend appropriate learning paths. In this paper, we propose a fine-grained and multi-context-aware learning path recommendation model for online learning communities based on a knowledge graph. First, we design a multidimensional knowledge graph to solve the problem of monotonous and incomplete entity information presentation of the single layer knowledge graph. Second, we use the topic preference features of users' postings to determine the starting point of learning paths. We then strengthen the distant relationship of knowledge in the global context using the multidimensional knowledge graph when generating and recommending learning paths. Finally, we build a user background similarity matrix to establish user connections in the local context to recommend users with similar knowledge levels and learning preferences and synchronize their subsequent postings. Experiment results show that the proposed model can recommend appropriate learning paths for users, and the recommended similar users and postings are effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助陈锦慧采纳,获得10
1秒前
周周周发布了新的文献求助10
1秒前
酷波er应助77采纳,获得10
1秒前
2秒前
2秒前
Zoe013发布了新的文献求助10
2秒前
Oranging完成签到,获得积分10
3秒前
现代的涵菱完成签到,获得积分10
3秒前
土豆大王完成签到,获得积分10
4秒前
无情的烨霖完成签到,获得积分10
4秒前
yy发布了新的文献求助10
4秒前
orixero应助无限绮南采纳,获得10
4秒前
小景007发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
华仔应助土豪的飞荷采纳,获得10
6秒前
lzl完成签到,获得积分10
6秒前
Lucas应助mueimuei采纳,获得10
6秒前
子车茗应助义气的如柏采纳,获得30
7秒前
六斤米完成签到,获得积分10
8秒前
小瑜发布了新的文献求助10
8秒前
充电宝应助婧婧婧采纳,获得10
8秒前
沧海一粟完成签到,获得积分10
9秒前
Wait完成签到,获得积分10
9秒前
共享精神应助catut采纳,获得10
9秒前
搞怪猎豹发布了新的文献求助30
9秒前
共享精神应助XudongHou采纳,获得30
9秒前
清澈水眸发布了新的文献求助10
10秒前
10秒前
11秒前
金桔儿发布了新的文献求助10
11秒前
Hello应助默默的不二采纳,获得10
11秒前
11秒前
12秒前
乐乐应助吃饱了撑的采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
han0120发布了新的文献求助20
13秒前
高大的白桃完成签到,获得积分10
14秒前
张利双发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474952
求助须知:如何正确求助?哪些是违规求助? 4576591
关于积分的说明 14358882
捐赠科研通 4504624
什么是DOI,文献DOI怎么找? 2468313
邀请新用户注册赠送积分活动 1455982
关于科研通互助平台的介绍 1429775