Drug–Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information

修剪 计算机科学 交互信息 完整信息 数据挖掘 相似性(几何) 相互信息 特征(语言学) 机器学习 人工智能 数学 统计 生物 图像(数学) 语言学 哲学 数理经济学 农学
作者
Yanfei Li,Chang Sun,Jinmao Wei,Jian Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (22): 5073-5080 被引量:7
标识
DOI:10.1093/bioinformatics/btac629
摘要

Large-scale heterogeneous data provide diverse perspectives for predicting drug-protein interactions (DPIs). However, the available information on molecular interactions and clinical associations related to drugs or proteins is incomplete because there may be unproven interactions and associations. This incomplete information in the available data is presented in the form of non-interaction and non-correlation, which may mislead the prediction model. Existing methods fuse incomplete and complete information without considering their integrity, so the negative effects of incomplete information still exist.We develop a network-based DPI prediction method named BRWCP, which uses the complete information network to correct the prediction results acquired by the incomplete information network. By integrating relevant heterogeneous information that may be incomplete, the feature similarities of drugs and proteins are obtained. Combining the feature similarities and known DPIs, an incomplete information-based drug-protein heterogeneous network is constructed. Then, a bidirectional random walk with pruning algorithm is adopted in this heterogeneous network to predict potential DPIs. Next, the predicted DPIs are combined with the chemical fingerprint similarity of drugs and amino acid sequence similarity of proteins to construct the complete information network. The bidirectional random walk with pruning algorithm is applied in the new network to obtain the final prediction results until it converges. Experimental results show that BRWCP is superior to several state-of-the-art DPI prediction methods, and case studies further confirm its ability to tap potential DPIs.The code and data used in BRWCP are available at https://github.com/lyfdomain/BRWCP.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大哥小钊狗完成签到,获得积分10
刚刚
maqin完成签到,获得积分10
刚刚
下文献的蜉蝣完成签到 ,获得积分10
1秒前
仇悦完成签到,获得积分10
3秒前
天空的声音完成签到,获得积分10
3秒前
李丽完成签到,获得积分10
3秒前
Miranda发布了新的文献求助10
3秒前
4秒前
在水一方应助Komorebi采纳,获得10
4秒前
cdercder应助一汪采纳,获得10
4秒前
4秒前
5秒前
十一完成签到 ,获得积分10
5秒前
wanna完成签到,获得积分10
5秒前
学渣小Robert完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
一2完成签到 ,获得积分10
8秒前
朴素的士晋完成签到 ,获得积分10
9秒前
开心的寄灵完成签到 ,获得积分10
9秒前
10秒前
yuyu发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
彭于晏应助啊薛薛薛采纳,获得10
11秒前
Novice6354完成签到 ,获得积分10
11秒前
Eternity完成签到,获得积分10
11秒前
阳光彩虹小白马完成签到 ,获得积分10
13秒前
13秒前
zhangfuchao发布了新的文献求助10
13秒前
科研通AI5应助volcanoes采纳,获得10
14秒前
Miranda完成签到,获得积分10
14秒前
typpppp发布了新的文献求助10
14秒前
朽木完成签到 ,获得积分10
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
P. J. Flory: "Principles of Polymer Chemistry" Cornell Univ. 1953 200
Information Security and Cryptology Inscrypt 2024 Part I 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827847
求助须知:如何正确求助?哪些是违规求助? 3369989
关于积分的说明 10460568
捐赠科研通 3089839
什么是DOI,文献DOI怎么找? 1700055
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770325