Retarding effect of submicron carbides on short fatigue crack propagation: Mechanistic modeling and Experimental validation

碳化物 材料科学 微观结构 纳米 千分尺 疲劳极限 压力(语言学) 复合材料 冶金 机械工程 工程类 语言学 哲学
作者
Jugan Zhang,Huihan Chen,Hanwei Fu,Yinan Cui,Chenchong Wang,Hao Chen,Zhigang Yang,Wenquan Cao,Jianxiong Liang,Chi Zhang
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:250: 118875-118875 被引量:12
标识
DOI:10.1016/j.actamat.2023.118875
摘要

High-strength steels generally contain a large number of spherical carbides with the size ranging from several hundred nanometers to several micrometers, which have an important impact on fatigue performance. Most studies believe that the carbides, similar to inclusions as fatigue crack initiators, should be refined as much as possible to improve fatigue performance. However, when the carbide size reaches submicron scale (several hundred nanometers to one micrometer), the traditional theory regarding the effect of carbides on fatigue performance may not be applicable. In this paper, it is found that smaller carbides are not always better, and an optimal submicron carbide size exists. By means of experiment and simulation, the mechanism as to how submicron carbides affect the fatigue performance of high-strength steels is systematically studied. It is found that a kind of microstructural transition occurs around carbides as a result of local stress concentration. This leads to the formation of Effective Strengthening Layers (ESLs), which force the short fatigue cracks to propagate along the ESL-matrix interface and decelerate crack propagation. The stress concentration required to generate ESL decreases with carbide size. Therefore, the competition between increasing the specific area of ESL and decreasing stress concentration with regard to decreasing carbide size yields an optimum carbide size. Based on this finding, a novel quantitative fatigue performance evaluation model with experimental validation is proposed for high-strength steels, providing a theoretical guidance for the microstructure design of submicron carbides for fatigue performance improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叽里咕卢完成签到,获得积分10
2秒前
zhangsan5421完成签到,获得积分10
3秒前
3秒前
3秒前
共享精神应助hhh1采纳,获得10
3秒前
搜集达人应助cookie采纳,获得10
4秒前
Clement洋发布了新的文献求助10
4秒前
吴未发布了新的文献求助10
5秒前
lin完成签到,获得积分10
6秒前
黎悦发布了新的文献求助10
6秒前
小魏小魏发布了新的文献求助20
6秒前
科目三应助Oz采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
称心鸵鸟发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
star应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
许甜甜鸭应助科研通管家采纳,获得20
11秒前
11秒前
852应助meng采纳,获得10
12秒前
12秒前
在水一方应助旅梦采纳,获得10
13秒前
zz发布了新的文献求助10
13秒前
Joyce发布了新的文献求助10
14秒前
accepted发布了新的文献求助10
14秒前
黄hhh发布了新的文献求助10
14秒前
ifly完成签到,获得积分10
15秒前
木火发布了新的文献求助10
16秒前
称心鸵鸟完成签到,获得积分10
17秒前
17秒前
十二发布了新的文献求助20
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836107
求助须知:如何正确求助?哪些是违规求助? 3378496
关于积分的说明 10504553
捐赠科研通 3098068
什么是DOI,文献DOI怎么找? 1706249
邀请新用户注册赠送积分活动 820923
科研通“疑难数据库(出版商)”最低求助积分说明 772312