Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network

计算机科学 卷积神经网络 过度拟合 人工智能 深度学习 机器学习 植物病害 上下文图像分类 集合(抽象数据类型) 人工神经网络 模式识别(心理学) 图像(数学) 生物技术 生物 程序设计语言
作者
Vibhor Kumar Vishnoi,Krishan Kumar,B. V. Rathish Kumar,Shashank Mohan,Arfat Ahmad Khan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 6594-6609 被引量:7
标识
DOI:10.1109/access.2022.3232917
摘要

Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models provide promising ways to identify plant diseases using leaf images. However, need of larger training sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of smaller number of layers leading to lower computational burden. Some augmentation techniques such as shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training set without actually capturing more images. The CNN model is trained for apple crop using a publicly available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN models for crop disease detection with comparable accuracy, but the proposed model needs lower storage and computational resources. Therefore, it is highly suitable for deploying in handheld devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
zz发布了新的文献求助10
3秒前
3秒前
邓佳鑫Alan应助zzz采纳,获得10
4秒前
暴富暴富完成签到,获得积分10
5秒前
Ava应助cya采纳,获得10
5秒前
6秒前
wkkk完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
所所应助aliu采纳,获得10
11秒前
ttt发布了新的文献求助10
12秒前
12秒前
暴富暴富发布了新的文献求助10
12秒前
田様应助瀚森采纳,获得10
12秒前
完美世界应助薄荷岛1采纳,获得10
13秒前
13秒前
充电宝应助电信街舞采纳,获得10
15秒前
15秒前
Tom发布了新的文献求助10
15秒前
研友_VZG7GZ应助拉长的初蓝采纳,获得10
15秒前
16秒前
Lucas应助沉默的采白采纳,获得10
16秒前
ljs发布了新的文献求助10
16秒前
含蓄的荔枝应助眼睛大蹇采纳,获得10
17秒前
喻问盐发布了新的文献求助50
17秒前
秦百胜发布了新的文献求助10
18秒前
18秒前
后会无期发布了新的文献求助10
18秒前
aaaaaa发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
Miss坤完成签到,获得积分10
22秒前
22秒前
wanzhitao发布了新的文献求助10
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819495
求助须知:如何正确求助?哪些是违规求助? 3362505
关于积分的说明 10417189
捐赠科研通 3080626
什么是DOI,文献DOI怎么找? 1694656
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403