亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Crop Disease Identification Using Multi-fork Tree Networks and Microbial Data Intelligence

Fork(系统调用) 鉴定(生物学) 树(集合论) 计算机科学 人工智能 生物 数学 生态学 操作系统 数学分析
作者
S. S. Ittannavar,B. P. Khot,Vibhor Kumar Vishnoi,Swati Chandurkar,Harshal Mahajan
出处
期刊:Microorganisms for sustainability 卷期号:: 281-299
标识
DOI:10.1007/978-981-99-9621-6_18
摘要

In the early stages of crop disease, timely acquisition of information about crop diseases, determination of the causes and severity of infection, and targeted treatment are essential for preventing a decline in crop yield caused by disease spread. To address the issue of low accuracy in traditional deep learning networks for early crop disease identification, we propose an improved attention mechanism-based multi-fork tree network method. This method combines the attention mechanism with a residual network to recalibrate disease feature maps, resulting in SMLP_Res (Squeeze-Multi-layer Perceptron ResNet). Additionally, we extend the high-feature extraction-capable SMLP_ResNet (Squeeze-Multi-Layer Perceptron ResNet) network with a multi-fork tree structure, simplifying the task of early crop disease identification and effectively extracting early disease features. In our experiments, we use two datasets, Plant Village and AI Challenger 2018, to train and validate three network models: 18-layer ResNet, SE_ResNet, and SMLP_ResNet, as well as their equivalent multi-fork tree structure models, to assess the impact of SMLP_Res and the multi-fork tree structure on crop disease identification models. The experimental analysis shows that the three network models, 18-layer ResNet, SE_ResNet, and SMLP_ResNet, all achieve an accuracy rate of over 99% in disease identification on the Plant Village dataset, where disease features are more pronounced. However, their accuracy rates on the early disease dataset AI Challenger 2018 do not exceed 87%. SMLP_ResNet, due to the inclusion of the SMLP_Res module, provides more comprehensive feature extraction for crop disease data, resulting in better detection performance. Among the three early disease identification models with multi-fork tree structures, all models show significant improvements in accuracy on the AI Challenger 2018 dataset. The multi-fork tree SMLP_ResNet outperforms the other two models, achieving the best performance with a cherry early disease identification accuracy rate of 99.13%. The proposed multi-fork tree SMLP_ResNet crop early disease identification model simplifies the recognition task, suppresses noise transmission, and achieves high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
lele完成签到,获得积分10
3秒前
12秒前
科研通AI6应助ww采纳,获得10
15秒前
歪屁发布了新的文献求助10
17秒前
三三完成签到 ,获得积分20
29秒前
科研通AI6应助歪屁采纳,获得10
29秒前
lin完成签到,获得积分10
35秒前
41秒前
CES_SH应助樱桃小王子采纳,获得50
44秒前
芜衡落砂完成签到,获得积分10
1分钟前
1分钟前
XXXXXX完成签到,获得积分10
1分钟前
XXXXXX发布了新的文献求助10
1分钟前
1分钟前
搞怪斑马发布了新的文献求助10
1分钟前
1分钟前
ww发布了新的文献求助10
1分钟前
1分钟前
噔噔蹬发布了新的文献求助10
1分钟前
科研通AI5应助ww采纳,获得30
1分钟前
米糕爸爸发布了新的文献求助10
1分钟前
故意不上钩的鱼完成签到,获得积分0
1分钟前
anne完成签到 ,获得积分10
1分钟前
大个应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
打打应助yyy采纳,获得10
2分钟前
幸福致远完成签到,获得积分10
2分钟前
Magali发布了新的文献求助10
2分钟前
桐桐应助辣椒油油采纳,获得10
2分钟前
2分钟前
2分钟前
Shoujiang完成签到 ,获得积分0
2分钟前
yyy发布了新的文献求助10
2分钟前
马蓉发布了新的文献求助10
2分钟前
科研通AI5应助米糕爸爸采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4497623
求助须知:如何正确求助?哪些是违规求助? 3949192
关于积分的说明 12244045
捐赠科研通 3607153
什么是DOI,文献DOI怎么找? 1984316
邀请新用户注册赠送积分活动 1020689
科研通“疑难数据库(出版商)”最低求助积分说明 913139