Dynamic Probabilistic Selling When Customers Have Boundedly Rational Expectations

概率逻辑 动态定价 利润(经济学) 盈利能力指数 采购 微观经济学 计算机科学 利润最大化 序贯博弈 经济 业务 营销 博弈论 财务 人工智能
作者
Tingliang Huang,Zhe Yin
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:23 (6): 1597-1615 被引量:34
标识
DOI:10.1287/msom.2020.0894
摘要

Problem definition: The existing literature on probabilistic or opaque selling has largely focused on understanding why it is attractive to firms. In this paper, we intend to answer a follow-up question: How should opaque selling be managed in a firm’s operations over time? Academic/practical relevance: Answering this question is relevant yet complex, because in practice (i) the profitability of opaque selling depends on how customers respond to the firm’s product-offering strategies and (ii) the firm’s strategies have to be responsive to customers’ purchasing decisions to maximize its total profit. Methodology: We develop a simple game-theoretic framework to capture the dynamic nature of the problem in multiple periods when customers boundedly rationally expect the firm’s strategies through anecdotal reasoning. We characterize the firm’s optimal pricing and product-offering policy. Results: We find that offering the high-value product with a high probability followed by a lower probability is typically optimal over time. We finally analyze several model extensions, such as different numbers of customers, multiple anecdotes, infinitely many periods, and limited inventory, and show the robustness of our results. Managerial implications: We demonstrate the value of using a dynamic probabilistic selling policy and prove that our dynamic policy can double the firm’s profit compared with using the static policy proposed in the existing literature. In a dynamic programming model, we prove that a cycle policy oscillating between two product-offering probabilities is typically optimal in the steady state over infinitely many periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hz_sz完成签到,获得积分10
刚刚
chenwang发布了新的文献求助20
1秒前
yb完成签到,获得积分10
1秒前
温婉发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
烟花应助阵雨采纳,获得10
5秒前
5秒前
YaoHui完成签到,获得积分10
5秒前
5秒前
大模型应助Pendulium采纳,获得10
6秒前
6秒前
言午完成签到,获得积分10
7秒前
今后应助跳跃的大楚采纳,获得10
7秒前
乐观金毛发布了新的文献求助10
8秒前
贤惠的白开水完成签到 ,获得积分10
8秒前
8秒前
鲜艳的忆枫完成签到,获得积分10
9秒前
赫连涵柏给赫连涵柏的求助进行了留言
9秒前
荡南桥发布了新的文献求助30
10秒前
zhengyuetong完成签到,获得积分10
10秒前
迷路的之云完成签到,获得积分10
10秒前
宁羽发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
cos完成签到 ,获得积分10
11秒前
霸气雯完成签到,获得积分10
16秒前
哈基米德举报yueyue3SCI求助涉嫌违规
16秒前
峰成完成签到 ,获得积分10
16秒前
zhengyuetong发布了新的文献求助10
16秒前
BareBear应助宁羽采纳,获得10
16秒前
17秒前
年轻怀绿完成签到,获得积分10
17秒前
荡南桥完成签到,获得积分10
18秒前
minglan完成签到,获得积分10
18秒前
科目三应助执着皮皮虾采纳,获得10
18秒前
俊逸似狮完成签到 ,获得积分10
18秒前
mengtingmei完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938