TSB-UAD

单变量 异常检测 计算机科学 水准点(测量) 系列(地层学) 异常(物理) 数据挖掘 时间序列 自回归积分移动平均 过程(计算) 机器学习 多元统计 地理 物理 操作系统 生物 古生物学 凝聚态物理 大地测量学
作者
John Paparrizos,Yuhao Kang,Paul Boniol,Ruey S. Tsay,Themis Palpanas,Michael J. Franklin
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:15 (8): 1697-1711 被引量:62
标识
DOI:10.14778/3529337.3529354
摘要

The detection of anomalies in time series has gained ample academic and industrial attention. However, no comprehensive benchmark exists to evaluate time-series anomaly detection methods. It is common to use (i) proprietary or synthetic data, often biased to support particular claims; or (ii) a limited collection of publicly available datasets. Consequently, we often observe methods performing exceptionally well in one dataset but surprisingly poorly in another, creating an illusion of progress. To address the issues above, we thoroughly studied over one hundred papers to identify, collect, process, and systematically format datasets proposed in the past decades. We summarize our effort in TSB-UAD, a new benchmark to ease the evaluation of univariate time-series anomaly detection methods. Overall, TSB-UAD contains 13766 time series with labeled anomalies spanning different domains with high variability of anomaly types, ratios, and sizes. TSB-UAD includes 18 previously proposed datasets containing 1980 time series and we contribute two collections of datasets. Specifically, we generate 958 time series using a principled methodology for transforming 126 time-series classification datasets into time series with labeled anomalies. In addition, we present data transformations with which we introduce new anomalies, resulting in 10828 time series with varying complexity for anomaly detection. Finally, we evaluate 12 representative methods demonstrating that TSB-UAD is a robust resource for assessing anomaly detection methods. We make our data and code available at www.timeseries.org/TSB-UAD. TSB-UAD provides a valuable, reproducible, and frequently updated resource to establish a leaderboard of univariate time-series anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
今后应助YXChen采纳,获得10
1秒前
chenxiaoshuo完成签到,获得积分10
2秒前
深情安青应助一区top采纳,获得10
3秒前
小巧碧凡发布了新的文献求助10
3秒前
飞飞飞发布了新的文献求助10
4秒前
FashionBoy应助燕燕于飞采纳,获得10
4秒前
香蕉觅云应助Kenny采纳,获得30
4秒前
5秒前
贺万万发布了新的文献求助10
6秒前
6秒前
8秒前
赵三岁发布了新的文献求助10
10秒前
liuHX完成签到,获得积分10
11秒前
hhcosy发布了新的文献求助10
11秒前
田様应助老迟到的友菱采纳,获得10
14秒前
乐乐应助迷人磬采纳,获得30
15秒前
16秒前
20秒前
hhcosy完成签到,获得积分10
21秒前
zhzzhz完成签到,获得积分10
22秒前
22秒前
haoduoyu发布了新的文献求助10
23秒前
苹果酸奶完成签到 ,获得积分10
25秒前
galeno完成签到,获得积分10
26秒前
王敬顺发布了新的文献求助20
26秒前
27秒前
27秒前
HHW完成签到,获得积分10
27秒前
32秒前
32秒前
大模型应助王诗禹采纳,获得10
33秒前
赘婿应助Alec采纳,获得10
34秒前
cy发布了新的文献求助10
36秒前
科目三应助疯狂的冬瓜采纳,获得10
37秒前
38秒前
39秒前
Orange应助殷勤的学姐采纳,获得30
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785709
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250327
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759979