已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning approach for clinker quality prediction and nonlinear model predictive control design for a rotary cement kiln

熟料(水泥) 工艺工程 模型预测控制 过程(计算) 回转窑 工程类 质量(理念) 过程控制 水泥 环境科学 废物管理 计算机科学 控制(管理) 硅酸盐水泥 材料科学 冶金 人工智能 哲学 操作系统 认识论
作者
Asem Ali,Juan David Tabares,W. Mark McGinley
出处
期刊:Journal of advanced manufacturing and processing [Wiley]
卷期号:4 (4) 被引量:9
标识
DOI:10.1002/amp2.10137
摘要

Abstract Cement manufacturing is energy‐intensive (5Gj/t) and comprises a significant portion of the energy footprint of concrete systems. Incorporating modern monitoring, simulation and control systems will allow lower energy use, lower environmental impact, and lower costs of this widely used construction material. One of the goals of the CESMII roadmap project on the Smart Manufacturing of Cement included developing an analytical process model for clinker quality that includes the chemistry of the kiln feed and accounts for critical process variables. This predictive model will be used in nonlinear model predictive control system designed to significantly reduce process energy use while maintaining or improving product quality. In the cement manufacturing plant used in this study, the kiln feed (meal) is tested every 12 h and used to estimate the mineral composition of the cement kiln output (clinker) using the stoichiometry‐based Bogue's model and the expertise of the plant operators. During kiln operation, kiln output (clinker) is sampled and tested every 2 h to measure its chemical and mineral composition. The predicted and measured values of the clinker composition are used by the plant operators to adjust the kiln input stream and the production process characteristics to maintain stable operation and uniform product quality. However, the time delay between prediction and testing, along with inaccuracies inherent in the Bogue's model have made any process changes designed to minimize energy use problematic, especially in‐light of potential clinker quality issues that process changes often pose. A new analytical model that integrates quality information and process operation information has been developed from data collected from 2 years of production from an operating cement facility. To make the model fuel‐type‐independent, consumed heat energy was computed in the model instead of fuel type and amount. A Feedforward Network was trained and tailored from collected data. Many data‐based simulations were conducted to quantitatively evaluate the proposed model and the 5‐fold cross‐validation procedure was used to test the models. The resulting predictive model was shown to have a low root mean square error (MSE) with respect to the estimated clinker mineral composition compared to that using the industry standard “Bogue’ model”. The end goal of this work was to develop a single machine learning tool that allows the use of quality control data and process control variables to improve energy efficiency of the process in a continuous fashion. The proposed nonlinear model predictive control system (NMPC) can generate predicted kiln production characteristics based on manipulated variables in manner that accurately follows the target product quality values. Simulation results also show that the proposed model produced accurate predictions of kiln outputs that fell within the required constraints, while manipulating control variables within typical operational ranges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助禹冷玉采纳,获得10
刚刚
bmhs2017应助阿歪歪采纳,获得10
1秒前
1秒前
南曦完成签到 ,获得积分10
1秒前
kls完成签到 ,获得积分10
1秒前
3秒前
liu完成签到,获得积分10
5秒前
ii发布了新的文献求助10
7秒前
qin给朱志伟的求助进行了留言
8秒前
yxc完成签到 ,获得积分10
8秒前
务实觅松完成签到 ,获得积分10
9秒前
翊嘉完成签到 ,获得积分10
9秒前
9秒前
pure完成签到 ,获得积分10
10秒前
风中幻天完成签到,获得积分10
11秒前
zzww发布了新的文献求助10
12秒前
zgjc完成签到,获得积分10
13秒前
属实有点拉胯完成签到 ,获得积分10
16秒前
HHYYAA发布了新的文献求助10
16秒前
科研小菜完成签到 ,获得积分10
18秒前
19秒前
香蕉觅云应助HHYYAA采纳,获得10
20秒前
咩咩完成签到 ,获得积分10
21秒前
翊嘉完成签到 ,获得积分10
22秒前
DryDry完成签到 ,获得积分10
23秒前
怜熙完成签到 ,获得积分10
25秒前
31秒前
tutu完成签到,获得积分0
32秒前
科研同路人完成签到,获得积分0
33秒前
内向的哈密瓜完成签到,获得积分10
33秒前
17完成签到,获得积分10
34秒前
36秒前
36秒前
lulu完成签到 ,获得积分10
37秒前
夜行发布了新的文献求助10
37秒前
欣喜的不惜完成签到 ,获得积分10
40秒前
40秒前
小曾最棒啦完成签到 ,获得积分10
41秒前
41秒前
科研通AI6应助温良恭俭让采纳,获得10
41秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385140
求助须知:如何正确求助?哪些是违规求助? 4507821
关于积分的说明 14029039
捐赠科研通 4417666
什么是DOI,文献DOI怎么找? 2426643
邀请新用户注册赠送积分活动 1419324
关于科研通互助平台的介绍 1397721