A machine learning approach for clinker quality prediction and nonlinear model predictive control design for a rotary cement kiln

熟料(水泥) 工艺工程 模型预测控制 过程(计算) 回转窑 工程类 质量(理念) 过程控制 水泥 环境科学 废物管理 计算机科学 控制(管理) 硅酸盐水泥 材料科学 冶金 哲学 认识论 人工智能 操作系统
作者
Asem Ali,Juan David Tabares,W. Mark McGinley
出处
期刊:Journal of advanced manufacturing and processing [Wiley]
卷期号:4 (4) 被引量:9
标识
DOI:10.1002/amp2.10137
摘要

Abstract Cement manufacturing is energy‐intensive (5Gj/t) and comprises a significant portion of the energy footprint of concrete systems. Incorporating modern monitoring, simulation and control systems will allow lower energy use, lower environmental impact, and lower costs of this widely used construction material. One of the goals of the CESMII roadmap project on the Smart Manufacturing of Cement included developing an analytical process model for clinker quality that includes the chemistry of the kiln feed and accounts for critical process variables. This predictive model will be used in nonlinear model predictive control system designed to significantly reduce process energy use while maintaining or improving product quality. In the cement manufacturing plant used in this study, the kiln feed (meal) is tested every 12 h and used to estimate the mineral composition of the cement kiln output (clinker) using the stoichiometry‐based Bogue's model and the expertise of the plant operators. During kiln operation, kiln output (clinker) is sampled and tested every 2 h to measure its chemical and mineral composition. The predicted and measured values of the clinker composition are used by the plant operators to adjust the kiln input stream and the production process characteristics to maintain stable operation and uniform product quality. However, the time delay between prediction and testing, along with inaccuracies inherent in the Bogue's model have made any process changes designed to minimize energy use problematic, especially in‐light of potential clinker quality issues that process changes often pose. A new analytical model that integrates quality information and process operation information has been developed from data collected from 2 years of production from an operating cement facility. To make the model fuel‐type‐independent, consumed heat energy was computed in the model instead of fuel type and amount. A Feedforward Network was trained and tailored from collected data. Many data‐based simulations were conducted to quantitatively evaluate the proposed model and the 5‐fold cross‐validation procedure was used to test the models. The resulting predictive model was shown to have a low root mean square error (MSE) with respect to the estimated clinker mineral composition compared to that using the industry standard “Bogue’ model”. The end goal of this work was to develop a single machine learning tool that allows the use of quality control data and process control variables to improve energy efficiency of the process in a continuous fashion. The proposed nonlinear model predictive control system (NMPC) can generate predicted kiln production characteristics based on manipulated variables in manner that accurately follows the target product quality values. Simulation results also show that the proposed model produced accurate predictions of kiln outputs that fell within the required constraints, while manipulating control variables within typical operational ranges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲凝琴发布了新的文献求助10
2秒前
骨科AAA完成签到 ,获得积分20
6秒前
骨科小白完成签到 ,获得积分20
14秒前
16秒前
21秒前
科研人完成签到,获得积分20
27秒前
Bin_Liu完成签到,获得积分20
37秒前
CHEN完成签到 ,获得积分10
38秒前
hhh2018687完成签到,获得积分10
39秒前
44秒前
45秒前
开拖拉机的医学僧完成签到 ,获得积分10
48秒前
无情的匪完成签到 ,获得积分10
55秒前
研友完成签到 ,获得积分10
55秒前
研友_ZzrWKZ完成签到 ,获得积分10
1分钟前
天天向上完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
1分钟前
hmhu完成签到,获得积分10
1分钟前
hmhu发布了新的文献求助10
1分钟前
小小王完成签到 ,获得积分10
1分钟前
1分钟前
fddd完成签到 ,获得积分10
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
Balance Man完成签到 ,获得积分0
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
呜呼啦呼完成签到 ,获得积分10
1分钟前
英俊的铭应助顺顺采纳,获得10
1分钟前
小李完成签到 ,获得积分10
2分钟前
laohu完成签到,获得积分10
2分钟前
2分钟前
lopper应助Bgeelyu采纳,获得10
2分钟前
威武画板完成签到 ,获得积分10
2分钟前
研友_Z30GJ8完成签到,获得积分0
2分钟前
Ava应助滕皓轩采纳,获得10
2分钟前
wwj1009完成签到 ,获得积分10
2分钟前
2分钟前
欣慰冬亦完成签到 ,获得积分10
2分钟前
apckkk完成签到 ,获得积分10
2分钟前
芝诺的乌龟完成签到 ,获得积分0
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353