Future Frame Prediction Network for Video Anomaly Detection.

计算机科学 异常检测 人工智能 稳健性(进化) 计算机视觉 帧(网络) 异常(物理) 机器学习 模式识别(心理学)
作者
Weixin Luo,Wen Liu,Dongze Lian,Shenghua Gao
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:PP
标识
DOI:10.1109/tpami.2021.3129349
摘要

Video Anomaly detection in videos refers to the identification of events that do not conform to expected behavior. However, almost all existing methods cast this problem as the minimization of reconstruction errors of training data including only normal events, which may lead to self-reconstruction and cannot guarantee a larger reconstruction error for an abnormal event. In this paper, we propose to formulate the video anomaly detection problem within a regime of video prediction. We advocate that not all video prediction networks are suitable for video anomaly detection. Then, we introduce two principles for the design of video prediction network for video anomaly detection. Based on them, we elaborately design a video prediction network with appearance and motion constraints for video anomaly detection. Further, to promote the generalization of the prediction based video anomaly detection for novel scenes, we carefully investigate the usage of a meta learning within our framework, where our model can be fast adapted to a new testing scene with only a few staring frames. Extensive experiments on both a toy dataset and three real datasets validate the effectiveness of our method in terms of robustness to the uncertainty in normal events and the sensitivity to abnormal events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HIKUN完成签到,获得积分10
刚刚
冰魂应助kuan采纳,获得10
刚刚
大模型应助颜苏采纳,获得10
刚刚
含糊的冰安完成签到,获得积分10
1秒前
bellaluna完成签到 ,获得积分10
1秒前
科研通AI5应助小榕采纳,获得10
1秒前
超级白昼发布了新的文献求助10
2秒前
2秒前
Ashley发布了新的文献求助10
3秒前
摇落月完成签到,获得积分10
4秒前
borisgugugugu发布了新的文献求助10
4秒前
热心的戎完成签到,获得积分10
5秒前
李予川完成签到,获得积分10
6秒前
6秒前
EKo发布了新的文献求助10
6秒前
我爱学习发布了新的文献求助10
6秒前
李爱国应助小黄采纳,获得10
6秒前
积极的沛文完成签到,获得积分10
7秒前
lizhiqian2024发布了新的文献求助10
7秒前
7秒前
lisier完成签到,获得积分10
7秒前
粗暴的菠萝完成签到,获得积分10
7秒前
8秒前
LordRedScience完成签到,获得积分10
8秒前
newman完成签到,获得积分10
8秒前
香蕉觅云应助了了了采纳,获得10
9秒前
9秒前
冯晓静完成签到 ,获得积分10
9秒前
9秒前
10秒前
LIN_YX发布了新的文献求助10
10秒前
汉堡包应助呆萌诗翠采纳,获得10
11秒前
xmy完成签到,获得积分10
12秒前
12秒前
hai完成签到,获得积分10
12秒前
13秒前
liuguohua126完成签到,获得积分10
13秒前
看看看完成签到,获得积分10
13秒前
kkkkkoi完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349333
关于积分的说明 10343655
捐赠科研通 3065398
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764669