Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction

粒度 残余物 计算机科学 系列(地层学) 时间序列 估计 人工智能 机器学习 数据挖掘 模式识别(心理学) 算法 工程类 生物 操作系统 古生物学 系统工程
作者
Min Hou,Chang Xu,Zhi Li,Yang Liu,Weiqing Liu,Enhong Chen,Jiang Bian
标识
DOI:10.1145/3485447.3512056
摘要

Time-series prediction is of high practical value in a wide range of applications such as econometrics and meteorology, where the data are commonly formed by temporal patterns. Most prior works ignore the diversity of dynamic pattern frequency, i.e., different granularities, suffering from insufficient information exploitation. Thus, multi-granularity learning is still under-explored for time-series prediction. In this paper, we propose a Multi-granularity Residual Learning Framework (MRLF) for more effective time series prediction. For a given time series, intuitively, there are more or less semantic overlaps and validity differences among its representations of different granularities. Due to the information redundancy, straightforward methods that leverage multi-granularity data, such as concatenation or ensemble, can easily lead to the model being dominated by the redundant coarse-grained trend information. Therefore, we design a novel residual learning net to model the prior knowledge of the fine-grained data's distribution through the coarse-grained one. Then, by calculating the residual between multi-granularity data, the redundant information be removed. Furthermore, to alleviate the side effect of validity differences, we introduce a self-supervised objective for confidence estimation, which delivers more effective optimization without the requirement of additional annotation efforts. Extensive experiments on the real-world datasets indicate that multi-granular information significantly improves the time series prediction performance, and our model is superior in capturing such information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kingwill举报阿腾求助涉嫌违规
1秒前
聪慧的梦安完成签到,获得积分10
1秒前
hooo发布了新的文献求助10
1秒前
1秒前
东原角完成签到 ,获得积分20
2秒前
ttttt完成签到,获得积分10
2秒前
瘦瘦店员发布了新的文献求助10
2秒前
3秒前
钵钵鸡完成签到 ,获得积分10
3秒前
MchemG应助wodeqiche2007采纳,获得30
3秒前
3秒前
103921wjk发布了新的文献求助10
4秒前
xiewuhua发布了新的文献求助10
4秒前
快乐的雨竹完成签到,获得积分10
4秒前
4秒前
雪蛤完成签到,获得积分10
4秒前
沐启发布了新的文献求助20
5秒前
lililili完成签到,获得积分10
5秒前
彭于晏应助稳重向南采纳,获得10
5秒前
coolkid应助gh采纳,获得20
5秒前
搜集达人应助ttttt采纳,获得10
6秒前
再慕发布了新的文献求助10
7秒前
7秒前
小马甲应助lh采纳,获得10
7秒前
落后以旋发布了新的文献求助10
7秒前
悠然发布了新的文献求助10
8秒前
9秒前
科研小菜鸟i完成签到,获得积分10
9秒前
9秒前
10秒前
酷炫翠桃举报Jock求助涉嫌违规
10秒前
英俊的铭应助贺岚采纳,获得10
11秒前
LI电池完成签到,获得积分20
11秒前
ggyy完成签到,获得积分20
12秒前
aaron9898完成签到,获得积分10
12秒前
小狗完成签到 ,获得积分10
12秒前
杨桃完成签到,获得积分10
13秒前
水蜜桃关注了科研通微信公众号
13秒前
刘振岁发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
有机化学图表解 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717