A new method for discovering behavior patterns among animal movements

计算机科学 背景(考古学) 代表(政治) 动物行为 滑动窗口协议 人工智能 行为模式 数据挖掘 模式识别(心理学) 地理 窗口(计算) 法学 动物 操作系统 政治 考古 生物 软件工程 政治学
作者
Yuwei Wang,Ze Luo,John Y. Takekawa,Diann J. Prosser,Yan Xiong,Scott Newman,Xiangming Xiao,Nyambayar Batbayar,Kyle A. Spragens,S Balachandran,Baoping Yan
出处
期刊:International journal of geographical information systems [Informa]
卷期号:30 (5): 929-947 被引量:10
标识
DOI:10.1080/13658816.2015.1091462
摘要

Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵坤煊完成签到 ,获得积分10
2秒前
11发布了新的文献求助10
3秒前
4秒前
在水一方应助马思婕采纳,获得10
4秒前
FyD关闭了FyD文献求助
5秒前
慕青应助木本采纳,获得10
5秒前
英姑应助lzy采纳,获得10
5秒前
5秒前
5秒前
6秒前
半世千秋完成签到,获得积分10
6秒前
乐乐应助香蕉元风采纳,获得10
6秒前
56完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
瓶中手稿完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
知然发布了新的文献求助10
8秒前
领导范儿应助王粒伊采纳,获得10
8秒前
9秒前
粗暴的鱼完成签到 ,获得积分20
9秒前
兴奋的千筹完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
邱小七发布了新的文献求助10
10秒前
11秒前
大模型应助老迟到的发带采纳,获得30
11秒前
12秒前
ppsweek发布了新的文献求助10
12秒前
12秒前
12秒前
小羊完成签到,获得积分10
12秒前
13秒前
大模型应助FeiBai采纳,获得10
13秒前
13秒前
Erin完成签到,获得积分10
13秒前
nchudddd发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695561
求助须知:如何正确求助?哪些是违规求助? 5102593
关于积分的说明 15216563
捐赠科研通 4851817
什么是DOI,文献DOI怎么找? 2602794
邀请新用户注册赠送积分活动 1554421
关于科研通互助平台的介绍 1512453